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ABSTRACT

Accurate durability analysis o f MIG/MAG seam welds in automotive structures is a 
complex procedure. Evaluating stress accurately around the weld would require 
detailed finite element (FE) meshes. Since there are over 10 meters of such welds 
within a car structure, detailed FE modelling for weld durability assessment becomes 
impractical.

For effective weld Computer Aided Engineering (CAE) durability assessments, a 
balance is required between FE model details (mesh density) to achieve accuracy and 
the need to follow common modelling practices required by other CAE evaluations of 
a vehicle structure.

Therefore, new durability assessment approaches for welds are needed. In particular, 
suitable fatigue damage parameters, under the general term of “structural stress”, are 
to be selected for improved weld fatigue life predictions.

This EngD research is concerned with computer aided fatigue life analysis o f seam 
welds in automotive structures, especially in chassis assemblies. This has been 
achieved through:

• Weld Fatigue Data Generation
• Prediction

o Damage accumulation in welds 
o Weld fatigue analysis

This research does not cover:
• Improving weld fatigue performance
• Fatigue mechanisms in welded structures

Among the main conclusions drawn as a result o f my EngD research are:

Analysis o f variable amplitude coupon and Front Upper Control Arm (FUCA) 
component testing shows that mean stress does affect fatigue lives.

There were three modes of fatigue failure recorded -  toe, throat and interface failure. 
Overall, for both Volvo and Battelle approaches, structural stress-life (S-N) curves for 
welds are dependent on failure modes. For each failure mode, however, a master S-N 
curve does exist and is relatively independent o f joint geometry.

One of the main achievements o f the current EngD research is the extension o f the 
existing Volvo and Battelle methods to allow life prediction of fatigue failure from 
weld throat and interface.
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1. INTRODUCTION

Since the development o f the monocoque autobody in 1922 by Vincenzo Lancia, 

sheet steel has become the most important material in the automotive industry. Sheet 

steels give strength, recyclability, relative ease o f manufacture and weldability. 

Unfortunately, the industry is under continuing demands to meet tougher legislation 

requiring significant improvement in performance, weight reduction, enhanced 

safety, increased fuel efficiency, reduced fuel emissions with increased recyclability 

and climate protection. Consequently, as consumers in Europe become more 

environmentally aware, the successful vehicle manufacturers will be the ones with 

the best fuel economy and therefore lower polluting emissions. Thus reducing the 

weight o f the steel body structure and components will aid weight saving, which 

subsequently has great financial implications as light vehicles will not only be 

cheaper to manufacture, but also be more attractive to customers. (Clough 2003)

Since the drastic rise of fuel prices in the seventies, the reduction o f vehicle weight 

has become a basic requirement for the development o f new cars, trucks and busses. 

Nevertheless there is the general tendency in the opposite direction. The reasons for 

this contradiction are, on the one hand additional features for more comfort and 

safety in modem vehicles, as well as increased motor torque. On the other hand, the 

potential for mass savings in the basic structure is not enormous. For example, the 

benefit o f a magnesium transmission housing for a passenger car compared to an 

equivalent one made of aluminium is a weight saving o f about 5 kg.

The arrival of options such as air conditioning, passenger airbags, ABS, satellite 

navigation etc, which are standard fitments on the majority of cars, and aid to 

customer ride and drive satisfaction, has resulted in overall weight increases of 

vehicles. This is constantly working against the overall objective of weight reduction.

The increase in weight from customer safety and comfort systems has coincided with 

an overall decrease in the proportion o f steel used in a car compared to other more 

lightweight materials, which are finding their ways into automotive structures. To 

maintain a competitive edge in the automotive market over materials such as 

composites and aluminium, the steel industry has developed and is continuing to
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develop stronger, thinner steels for lightweight automotive body-in-white structures, 

chassis members and suspension components.

Projects such as ULSAB (Ultra Light Steel AutoBody) and ULSAS (Ultra Light 

Steel Auto Suspension) co-ordinated by an international steel producers consortium 

have been developed to identify approaches to vehicle weight reduction. They have 

already shown that use o f high strength steels (HSS), tailor welded blanks, tube 

hydro forming and continuous joining techniques allow a weight saving o f greater 

than 20% to be achieved for steel autobody and suspension construction, compared 

to current vehicles in service. (Hughes 1995)

During design o f a welded component, materials are selected with properties which 

allow a margin of safety against the material yielding at service loads, where 

typically designers try to ensure that peak stresses are below 2 / 3  o f the yield stress. 

However, under cyclic loading, fatigue failure can occur at loads well below this 

value. Fatigue is important for designers, as it is the single largest cause of 

component failure, estimated at approximately 90% of all failures. Fatigue crack 

initiation is usually attributed to the presence of some inherent stress concentration in 

the structure associated with the fabrication or design. (Ellwood and Lewis 1999)

Many failures can be attributed to poor component design. Designers commonly 

allowed large safety factors to reduce the likelihood of fatigue failure but in today's 

market this is becoming increasingly unacceptable. For example, automotive 

designers aim to improve structural performance, crashworthiness, reduce weight and 

improve reliability at the same time.

Welding is still a predominant assembly technique for automotive components such 

as suspension arms and chassis members. Therefore automotive designers must 

appreciate the stress concentrations that fusion seam welds introduce into automotive 

components, if  component validation test programmes are to be significantly reduced 

and virtual prototyping is to be introduced.

High strength steel structures are still required to satisfy specific performance criteria 

of the automotive manufactures particularly with respect to impact and durability.
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Lighter vehicles require better understanding o f fatigue properties under service 

conditions. To increase understanding and prediction accuracy then full size 

components must be tested in their in-service environment with a representative load 

regime.

Vehicle components are exposed to loading conditions that vary in magnitude and 

frequency. The steel thickness, type o f joining mechanism and in-service loading 

conditions are the main influences in the durability of seam-welded structures. Data 

for determining the fatigue strength of seam-welded structures is usually available in 

the form of simple welded joint load versus life, encompassing uniaxial constant 

amplitude loading o f simple components through to testing o f a component with 

multiaxial, in-service loading.

With the drive to have more environmentally friendly cars, vehicle manufacturers are 

reducing vehicle weight by using high strength steels, so it is important that 

designers have reliable techniques to evaluate the life o f seam welds throughout the 

various stages of vehicle development.

In the automotive industry there is a drive to decrease the development lead-times 

and costs for new car models. To achieve this, automotive manufacturers have 

increased their usage of computer aided engineering (CAE) tools at all stages o f 

vehicle development. There is a need to conduct CAE durability analysis in the early 

stages of design to ensure that fatigue related problems are reduced or removed 

before any costly prototypes are made.

Accurate durability analysis of seam welds in automotive structures is a complex 

procedure. Evaluating stress around such welds would require a detailed finite 

element (FE) mesh. Within each car structure, especially chassis and suspension 

structure, there may be well over 10 meters of welds, which inevitably result in too 

large a model to be practical if  such detailed FE weld representation is adopted.

Therefore, effective weld CAE durability analyses require a balance between 

accuracy of the FE model and the common practices involved in CAE evaluation o f
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automotive structures. Current CAE fatigue analysis methods have a lack of 

correlation and validation with physical testing.

Weld fatigue life prediction in the current EngD research is based on a “structural 

stress” that is derived from FE analyses. The outcome o f this research is to enable 

complex components and structures to be represented simply in the early FE stage of 

analysis but to gain accurate FE assessment o f the components.

The EngD research to be described and summarised in this thesis is a 4-year 

evaluation and development of new CAE weld durability assessment techniques of 

seam welds in automotive structures, especially in chassis assemblies. This has been 

accomplished through:

• Experimental Testing

o Data Generation using simple coupon lap-shear, peel and t-shaped 

joints. S-N curves will be produced from the “structural stress” arising 

from the FE models of the coupon joints, 

o Front Upper Control Arm (FUCA) component testing -  to gain lives 

of an automotive chassis component, for comparisons with weld 

fatigue life predictions.

• “Structural Stress” Analysis

o Using a coarse FE mesh for all coupon geometries due to the 

impracticality o f a very fine mesh, 

o With simple weld representation to aid the accurate FE assessment.

• Prediction

o Damage Accumulation in welds -  validating Miner’s Rule for 

variable amplitude loading, 

o Weld Fatigue Analysis -  FUCA component estimation o f life with 

comparison to actual test data.

This research does not cover:

• Improving weld fatigue performance.

• How fatigue mechanisms occur in welded structures -  in-depth observations 

o f the weld fracture surfaces and microstructures.
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2. FATIGUE

2.1 Introduction -  A Brief History

The term ‘fatigue’ was first used over 150 years ago by early investigators who 

noticed that, when cyclic stresses were applied, they caused gradual but no 

noticeable change in the materials ability to resist stress, although the materials were 

thought to be tired or fatigued. On removing the stresses, the tired material did not 

recover, as the damage was cumulative. This damage accumulation was termed 

‘fatigue’. (Dowling 1993)

Since the realisation that fatigue affects metals, it has been an important area o f 

research especially when bridge and railroad components in Europe were noticed to 

be cracking under repeated loads in service in the mid 1800s.

The first fatigue investigation was thought to be done by a German mining engineer 

W.A.S. Albert in 1828 who applied cyclic loads to iron mine hoist chains. The 

earliest recorded fatigue failure occurred in stagecoach axles and subsequently in 

railroad axles as they developed. August Wohler, a German railroad engineer in 

1850s, conducted fatigue tests on full-scale railway axles and on small laboratory 

specimens using different materials to establish stress levels at which fatigue does 

not occur. Wohler started the development of design strategies, which became the 

basis o f the modern-day fatigue analysis.

Since the 1850s, extensive research has been carried out into all aspects o f fatigue 

such as the fatigue lives o f different materials, further understanding of fatigue and 

producing methodologies to allow designers and engineers to estimate the fatigue 

lives of components. Even with all this research and understanding however, fatigue 

failure in components and structures is still a major problem, with approximately 80- 

90% of all failures in service being attributed to it. Fatigue is also important in the 

automotive industry, which is driven to reduce component weight while improving 

design stress levels.

2.2 Fatigue and Fatigue Failure Processes

Fatigue is a failure process where accumulative damage or premature failure can 

occur in machine components, vehicles and structures, which are subjected to
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dynamic, fluctuating stress from repetitive loading. Fatigue therefore is a major 

design criterion in establishing the structural integrity o f components in many 

engineering applications.

There are many definitions describing fatigue, but a formal description may be 

considered to be:

"The process o f  progressive localised permanent structural change occurring in a 

material that is subjected to conditions that produce fluctuating stresses and strains 

at some point or points and that may culminate in crack or complete fracture after 

sufficient number o f  fluctuations". (ASTME 1995)

Fatigue damage is caused by the simultaneous actions o f three basic factors: 1) cyclic 

stress, 2) tensile stress and 3) plastic strain. If one o f these factors is not present then 

fatigue failure becomes more difficult. The plastic strain initiates the crack, tensile 

stress promotes the crack growth, and failure often occurs at stress levels, which are 

much lower than that required under static loading. Therefore if the structure 

undergoes a steady (static) load, then fatigue failure will not occur, although in 

reality it is generally very rare to find a structure not undergoing any dynamic 

loading. Other factors such as variations in pressure, temperature, corrosion, 

overload, microstructure, vibrations, wind, etc, can all introduce a fluctuating load 

into a structure. In today's society, many structures can be affected such as 

automobiles, ships, aircraft, bridges, and pressure vessels etc.

Fatigue is a localised phenomenon, which occurs in structures under elastic 

engineering conditions; this is the reason why fatigue damage is insidious. Under 

static loading plastic deformation occurs, but with fatigue failure there is no obvious 

deformation as local plasticity initiates a crack or defect, but more o f a brittle type of 

structural appearance.

Generally the process o f fatigue crack development involves a number o f well- 

defined stages, and the formation o f small cracks occurs on a localised scale with 

non-uniform deformation. Manufacturing processes such as turning, grinding etc. 

cause surface roughness flaws from which microcrack formation can occur.
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The defined stages o f  fatigue craek development are:

• Stage I - Crack initiation

• Stage II - Crack propagation

• Accelerated crack growth to failure (overload -  fracture toughness has been

Each stage o f  the process can be classified as a separate issue and is influenced by 

many factors. The overall process is shown in figure 2.1a.

Figure 2.1: a) Fatigue Crack Growth Process, b) Typical Microstructural Fracture 

Surface of Fatigue Failure (Ritchie 1999)

Fatigue cracks usually initiate at free surfaces, which have the highest stress 

concentration, in surface grains where environmental interaction encourages crack 

formation. Crack propagation tends to show beach markings, which appear 

perpendicular to the crack direction. During the final stage o f  growth, the fracture 

surface shows an increasing proportion of features associated with static failure as 

-shown in figure 2.1b. (Ritchie 1999)

2.3 Factors Affecting Fatigue

Many factors can have a significant influence on fatigue of structures. These factors 

are related to material characteristics, manufacturing process as well as service 

conditions. Fatigue crack initiation and propagation are determined to a large extent 

by such factors as surface conditions, component shape and geometry and the type of 

material used.
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Material factors influencing fatigue properties may include the material type or 

family (e.g. mild steel, high-strength steels, or aluminium alloys etc.), mechanical 

properties (i.e. yield and tensile strengths, elongation to failure, and fracture



www.manaraa.com

toughness etc.), micro structures (e.g. grain sizes, phases and inclusions), and surface 

conditions (e.g. surface roughness, scratches or notches, and hardness).

Manufacturing factors relates to the component fabrication details, such as work 

hardening from metal forming operations, welding processes and residual stresses 

resulting from machining and tooling operations, as well as surface treatm ents,.

Structural components under in-service load and experimental test conditions can 

experience a number of different stress/strain-time histories. Service life factors 

affecting fatigue are (1) the nature o f the loads, i.e. whether the components are 

undergoing tensile or compressive stresses; and (2) stress state, i.e. whether a 

component is subjected to uniaxial loading or multi-axial loading during service.

2.3.1 Surface Finish Effects

Fatigue properties are very sensitive to surface conditions, as they will strongly 

influence the initiation o f a crack. Surface scratches, notches and residual stresses 

remaining from machining and tooling operations, all act as stress raisers, which 

magnify the stress level locally and therefore shorten the period required for cracks 

to initiate.

2.3.2 Surface Treatments

Surface treatments can introduce compressive stress at the surface and improve the 

fatigue performance by changing the residual stress state. There are three different 

methods of treatments: mechanical, thermal and plating. (Dieter 2001)

• Mechanical processes such as cold rolling or shot/needle peening are the 

most common ways of introducing compressive residual stresses; the 

material strength increases through work hardening. This form of treatment 

only influences long lives.

• Thermal treatments such as carburising and nitriding rely on diffusion of

carbon or nitrogen into the steel surface, improving the material strength and 

producing the required compressive surface residual stresses.

• Plating processes using nickel or chrome create tensile residuals thus

reducing the fatigue limit of the steel significantly, although annealing after

the plating treatment will relieve the stresses.
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2.3.3 Stress Concentration Effects

In general engineering, many fatigue design methods often use an average or 

nominal stress value that will depend on the service load and the cross sectional area. 

During normal service loads, it is very important that material yielding never occurs 

and that nominal stress levels are kept below the limit o f proportionality (elasticity) 

over the bulk of the component. Otherwise, areas of excessively high local stress 

concentration may exist, usually coinciding with such features as holes, sharp comers 

etc.

Kt, the stress concentration factor, is the ratio o f maximum stress to average stress 

and is based on geometrical effects and elastic conditions. If many discontinuities 

are present in a component, they can interfere with each other if  they are close 

together. Widely spaced holes do not interfere with each other and therefore affect 

the stress field, whereas holes in close proximity to each other will cause the stress 

fields to interact and behave as a single stress field.

2.3.4 Temperature

As the temperature is lowered the endurance limit tends to increase. At high 

temperatures between 370-540°C, steel's distinct endurance limit is removed, as the 

dislocations are mobile. Temperatures over 50% of the melting point cause creep 

phenomena to become a critical factor. Furthermore, high temperatures can remove 

the beneficial residual stresses.

2.3.5 Environment

The service environment which the component is subjected to can affect the fatigue 

life. A corrosive environment is the most critical as it attacks the metal surface and 

produces an oxide layer promoting further corrosive attack. This corrosion causes the 

formation of pits on the surface, which act as stress concentrations, thus accelerating 

fatigue failure. (Fine and Chung; Cui 2002)

2.4 Fatigue Loading Regimes

The most common loading sequences for test purposes are constant and variable 

amplitude.
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2.4.1 Constant Amplitude Loading

Constant amplitude loading is represented by a simple stress history, which has a 

constant maximum and minimum stress. This is also the quickest and cheapest 

method for gathering data. The majority o f tests completed are simple constant 

amplitude tests and the tests are usually carried out at fixed min/max stress ratios, R, 

o f R=0 (zero to full tensile load), R=-l (fully reversed loading) or 0<R<1 stress 

about a positive mean, described in section 2.5.1.

Metal fatigue has been recognised as a random or stochastic process and, as a result, 

produces scatter in results even under carefully controlled experiments, this 

ultimately complicates the analysis o f test data and application o f it into design. 

Fatigue considerations are of major importance when designing for durability o f 

components and structures particularly for motor vehicles. Since the work of August 

Wohler, constant amplitude testing of materials and structures has been adopted as 

the method to characterise basic fatigue properties and the effect of design variations. 

The information gathered from these experiments is however not adequate when 

adopted for fatigue assessment of components and structures under variable 

amplitude loading.

2.4.2 Variable Amplitude Loading

Automobile components rarely undergo constant amplitude loading during their 

lifetime. Instead these components experience in-service load histories, which have 

variable amplitude and therefore can be quite complex. Therefore, the automotive 

industry is mainly interested in estimating the lives of vehicle components in terms 

of how many miles the vehicle can travel before the occurrence of fatigue crack 

initiation. All components in the vehicle are designed with a life well above the 

target vehicle design life.

Since in-service components experience more complex loadings/waveforms, which 

have a small probability o f repetition over the component life, they are classified as 

enduring variable amplitude loading (figure 2.2 shows a typical history).
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Variable Amplitude Load History
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Figure 2.2: Typical Variable Amplitude History

The amount o f  fatigue damage occurring during initiation is very difficult to observe, 

as during this phase the damage mechanisms happen on a microstructural level, and 

unlike crack propagation, the damage cannot be measured. Fatigue data for materials 

under constant amplitude loading are usually expressed as the number o f  cycles to 

failure against the level o f  load applied. Sequence effects also influence crack 

propagation under complex loading - the order in which cycles are applied affects the 

rate o f  crack growth. Randomly varying load patterns cause life to be expressed as 

time (in cycles) whereas the service load history correlates to a distance travelled 

(e.g. miles). In addition, the random nature o f  the loading patterns cause problems 

with counting the number o f  applied “effective’' load cycles.

The Linear Damage Rule is a method where the amount o f  cumulative damage can 

be determined, Palgrem in 1924 first proposed the rule, which Miner subsequently 

developed further in 1945, and is commonly referred to as either the Miner Rule or 

Palgrem-Miner Rule. For variable amplitude load history, the complex cycle is 

broken down into a series o f  individual effective load cycles, and the fatigue damage 

for each of these cycles can be determined based on constant amplitude test results at 

the same load or stress amplitude.

There are several different methods to categorise variable amplitude loading, the 

earliest methods being: Level-Crossing Counting, Peak Counting and Range 

Counting. (Dowling 1987) However these methods all have drawbacks and the most 

common and reliable method is the Rainflow Cycle Counting. (Power 1978)

o
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2.5 Characterising Fatigue Performance of Materials

There are three primary methods to analyse fatigue, these are: stress-life (S-N) 

approach, strain-life (E-N) approach, and fracture mechanics approach.

The S-N method is the oldest nominal stress approach and is used where the applied 

stress is within the elastic range o f the material and is applicable for long life, or 

high-cycle fatigue (HCF) applications. With short lives or low-cycle fatigue (LCF) 

the S-N approach does not work well as the applied strains have a significant plastic 

component due to high load levels. This approach does not account for the local 

behaviour o f the material. Unfortunately this method does not distinguish between 

crack initiation and propagation but deals with the whole life o f a component.

The E-N method accounts for local behaviour and is more applicable for short life 

applications where the strain is no longer elastic but plastic. It is also often 

considered as a crack initiation approach.

The crack propagation or fracture mechanics approach is based on the linear elastic 

fracture mechanics (LEFM) principles adapted for cyclic loading. This method is 

used to predict the propagation life from an initial crack or defect. For predicting the 

total fatigue life, it is used in conjunction with the E-N approach.

2.5.1 Stress-Life (S-N) Data

Wohler first utilised the stress life or S-N method for understanding the concept of 

fatigue, and it stood as the main method for obtaining fatigue data for nearly a 

century. Therefore, it is often called the Wohler curve. The S-N method involves 

applying a sinusoidal cyclic load to a specimen. The nominal stress resulting from 

the applied load is plotted against the number o f cycles to failure, and this test is then 

repeated for a range of loads to give the S-N curve for smooth or unnotched 

specimens. Stress is always plotted on the y-axis with number o f cycles on the x- 

axis. The curves are then plotted using a logarithm (log) scale to obtain results in a 

straight line, but it is also common to find S-N curves being plotted on semi log 

scales. Figure 2.3 shows such examples of S-N curves.
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Figure 2.3: Typical S-N Curves for Ferrous and Non-Ferrous Metals

The S-N method has a major disadvantage in that it still assumes that the stresses in a 

component, even the local ones (but not at grain level) are below the elastic limit at 

all times. As a result, this method can only be considered for components with 

fatigue lives, which are expected to be long, and the stresses are normally within the 

elastic limit i.e. during High Cycle Fatigue (HCF) where fatigue lives are normally 

above 105 cycles. The specimens used to generate fatigue data must have a smooth 

and polished surface area and be free o f  any geometric stress concentrations. 

Variables commonly used for fatigue tests are defined as follows:

Maximum stress -  o max 

Minimum stress = o min 

Stress Range, Aa = a max - o min 

Stress Amplitude, a a = Aa/2 

Mean Stress, om = (omax + omin)/2 

Stress Ratio, R = o min / omax

(7

The applied cyclic load must be defined in terms o f  stress amplitude, a a, and mean 

load, a m, as the S-N curve is normally plotted in terms o f  cyclic stress range versus 

the number of cycles to failure. Typically sinusoidal stress waves are selected for 

fatigue tests, and the mean value is also required. These tests can be done under 

conditions which are fully reversed so that the mean stress value is zero (om = 0 or 

R= -1), although tests at non-zero mean stress are also possible.

From the plotted data, the resulting straight line S-N curve produces the convenient 

relationship shown in Eq.l, shown also in the illustration.

A a  = A ■ N hf or N f = a ■ A a Eq.

14
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— 1 With: a — A b , m = —
b

Where: -

‘ N f ’ = the number o f cycles,

‘A ’ or ‘a’ = the y-axis intercept value 

‘Aa’ = the stress range (MPa)

‘b ’ = the Basquin exponent.

‘m ’ = the inverse gradient of the line

10n

10°
aN f

From S-N curves an important parameter can be determined - the fatigue or 

endurance limit where failure does not occur under normal conditions and is a stress 

level below which the material is classed as having ‘infinite life’. This can be
n

identified from an S-N curve where it flattens off at high lives e.g. 10 cycles, if  the 

specimen does not fail after the ‘cut-off life, then it is classified as a ‘run-out’. HCF 

tests have to be limited to a specific number o f cycles; the stress at which the limit is 

reached is considered to be the fatigue limit o f the material.

For steels, there is a fatigue limit (as shown in figure 2.3) due to the pinning of 

dislocations by the interstitial elements e.g. carbon, nitrogen atoms. Pinning prevents 

slip and so initiation is said not to occur. However, problems can arise when using 

the fatigue limit in design, as it is very sensitive to such factors as the mean stress, 

defects, corrosive environment, high temperatures (which mobilise dislocations) and 

periodic overloading (which unpins dislocations). They can cause stresses to exceed 

the limit and can even remove the limit altogether so that the stress cycles become 

damaging in terms of fatigue.

Non-ferrous materials, on the other hand, tend not to have a fatigue limit and the S-N 

curve shows a continuous slope. Instead, fatigue strength is calculated for these
o

materials as the stress value corresponding to a life value of 5x10 cycles. Welded 

joints also do not tend to show this limit so all cycles applied are damaging, instead 

they show a change in gradient.

15



www.manaraa.com

2.5.1.1 Effect of Mean Stress

Many engineering components do experience non-zero mean stresses during their 

service life, such as in the case o f  residual stresses. The fatigue strength o f  materials 

is influenced by the mean stress, and a positive mean tensile stress will result in a 

shorter fatigue life than a zero mean stress. A Haigh diagram (shown in figure 2.4) is 

often used to take account of the effects o f  mean tensile stress during fatigue life 

analysis.

Figure 2.4: A Haigh Diagram (Bannantine, Comer et al. 1990)

Figure 2.4 indicates that as the mean stress increases, the stress range needs to 

decrease, in order for a material to survive for the same fatigue life. A Haigh diagram 

shows a series of constant lifelines, each o f  which represents all possible 

combinations o f  mean stress and stress amplitude that will give certain constant safe 

life for a material. Goodman, Gerber, and Soderburg developed empirical formulas 

to estimate lines o f  infinite life or a prescribed design life (e.g. 107 cycles). These 

formulas link the endurance limit (the stress level below which a specimen will 

withstand cyclic stress indefinitely without exhibiting fatigue failure), Se, on the 

stress amplitude axis to the ultimate tensile strength, Su, or true fracture stress, Of, on 

the mean stress axis. This avoids the large number of tests required to produce a 

Haigh diagram.

Goodman assumed that the decrease in a a follows a linear relationship as a m 

increases. Gerber, on the other hand, discovered that constant life curves results were 

more closely related to a parabolic relationship. This is known as Gerber's parabola, 

which is used for tensile mean stress only. Soderburg's relationship uses the yield 

stress, o y, instead o f  the ultimate tensile stress, o u; this also gives a straight line. 

These expressions can be shown below. (Bannantine, Comer et al. 1990; Kihl and 

Sarkani 1999)
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Gerber (1874):

Goodman (1899):

Soderburg (1930):

Morrow (1960):

The stress corrections developed by Gerber and Goodman are widely used with S-N 

curves but are usually plotted with nominal stress, which assumes that there are no 

local stress concentrations. It has been noticed that actual test data mainly falls 

between the Gerber and Goodman curves. Soderburg's expression is very 

conservative and is therefore seldom used. The Morrow formula is another 

modification, which uses the true fracture stress, o t- instead o f  the ultimate tensile 

stress, which is more applicable to ductile steels. This formula predicts less 

sensitivity to the mean stress. A comparison of  all above mentioned mean stress 

correction equations is shown in figure 2.5.

Figure 2.5: Comparison o f  the Mean Stress Equations (Bannantine, Comer et al. 

1990)

2.5.2 S train-L ife  (E-N) Data

The strain-life method was developed during the 1950s -  1960s, and is based on the 

observation that the material response in fatigue critical locations o f  many 

components is strain or deformation dependent. Results from the early research into 

fatigue shows that damage is dependent on the plastic deformation or strain. 

Therefore, the strain life data considers the plastic deformation that may occur in 

localised regions around crack initiation sites, and directly makes use o f  this

G erb er Line

G oodm an  Line

M odified G oodm an  Line

M orrow

roeen
M ean S tre s s

M orrow  L ine
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deformation in fatigue analysis. At long lives, both the stress-life and strain-life data 

are basically the same, as plastic strain is negligible, as shown in figure 2.6.

Figure 2.6: Elastic, Plastic & Total Strain Resistance to Fatigue Loading

The majority o f  engineering components and structures are designed so that the 

nominal loads remain elastic, although stress concentrations often cause plastic strain 

to develop locally, especially in the vicinity o f  notches. There is an elastic stress field 

surrounding such a localised plastic zone. Any fatigue damage at the notch root is 

believed to be controlled by the level o f  strain in the plastic zone.

As shown in figure 2.7a, the E-N method assumes that during testing o f  smooth 

specimens under strain control, fatigue damage can be caused at the notch root and 

similarly in engineering components. Failure o f  the component is assumed to occur 

when an equally stressed volume of material fails. Strain values in specimens are 

determined by measuring specimen extension with an extensometer, through which 

the applied strains can in turn be controlled during fatigue tests. Fatigue lives can 

subsequently be recorded and plotted in a similar manner to the S-N curves, but with 

the vertical axis being strain amplitude instead. However this method does allow 

components o f  short fatigue lives to be analysed.

a

Figure 2.7: a) A Smooth Test Specimen, b) A Hysteresis Loop (Dowling 1987; 

Bannantine, Comer et al. 1990)
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High levels of cyclic loads applied to a material, produces a series o f  stress - strain 

hysteresis loops from the data recorded. Although under a tension -  compression 

load cycle, it takes several hundred o f  reversals for a stable hysteresis loop to form, 

as shown in figure 2.7b. The applied strain range, As, and the applied stress range, 

A ct, are denoted by the width and height o f  the hysteresis loop, respectively. The 

strain range, As, is composed of  Asp the plastic strain range and Ase the elastic strain 

range.

The strain-life curve can be separated into the individual contributions from the 

elastic and plastic material deformations. The total strain life to failure is the 

combination of  both the elastic and plastic regions. Coffin and Manson through 

individual work found that a straight line could represent the plastic strain portion 

when plotted on a graph o f  logarithmic scale.(Manson 1953)

The equation for the line is represented in Eq.2:

+ e / ( 2iVT  Eq-2 

. t  t .Elastic Plastic

Where: -

Ae
~2

Strain Amplitude

° f Fatigue Strength Coefficient (MPa)

E Young's Modulus (MPa)

2 N f  = Reversals to Failure (1 reversal = Vi cycle)

b Fatigue Strength Exponent
/

e r Fatigue Ductility Coefficient

c = Fatigue Ductility Exponent

The above equation consists o f  two terms: - one accounts for the effect o f  the elastic 

strain and the other the plastic strain. The sum of these strain effects, will give that o f  

the total strain.
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2.5.3 S-N vs. E-N

Strain-life testing offers the best representation of cyclic behaviour at the notch root. 

Whether to use the S-N or E-N data often depends on the duration of life. For short 

lives, which have high levels o f fatigue loads, strain-life testing is more appropriate 

as it is better placed to account for plasticity, whereas at lives longer than 105, stress- 

life testing is more appropriate as stresses are low and linear in relation to strain.

Unfortunately strain controlled testing is not suitable for welded components, 

however, as welded components have complex stress and strain distributions at the 

failure site. This can cause difficulties in presenting the data in stress/strain cycles. 

Instead, the data is often presented in a load-cycle format.

2.5.4 Crack Propagation Performance Data

The fatigue life of components is made up of two stages: crack initiation and 

propagation. Fracture mechanics or damage tolerant design deals with solely the 

stage of crack propagation. This method is best used for components with inherent 

defects.

At the crack tip, stress and strain values become extremely large with material 

plastically deforming locally as the yield stress is exceeded. A parameter known as 

the stress intensity factor at the crack tip is used to define the magnitude and 

distribution of local stresses around the crack tip. It depends on the applied stress, 

material properties and shape and size o f the crack, with general form given in Eq.3:

K  = YcrJ(m ) Eq.3

Where: -

K = Stress Intensity Factor (MPaVmm)

a  = the applied stress to the component (MPa)

a = the crack length (mm)

Y = the correction factor related to specimen and crack geometry.

Fatigue crack propagation or fracture mechanics data is obtained using the above

equation. Propagation of fatigue cracks is caused by the fluctuation or change in the 

applied stress. Therefore, it is the range of stress intensity factor AK at the crack tip,
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which corresponds to the applied stress range Aa, which drives crack growth. The 

stress intensity factor range is defined in Eq.4:

AK  = K ma- K ^ =  Y A o J (m )  Eq.4 

In fatigue, therefore, the stress intensity factor range AK provides the driving force 

for crack growth, and governs the rate o f crack growth, which is expressed as da/dN. 

The two are related by a crack growth "law", the best-known being the Paris Law 

derived by P. C. Paris in 1960, shown in Eq.5:

— 1 = C{AK)m Eq.5 
\ d N )

Where: -

C and m =material constants

a =crack length (mm)

da/dN =crack propagation rate, or change in crack length per cycle

(mm/cycle)

Data is usually collected as crack size, a, versus number o f cycles, and converted into 

da/dN and then plotted against AK on a log scale. The subsequent sigmoidal curve is 

shown in figure 2.8, which may be divided into three distinct regions according to 

the curve shape, the mechanisms of crack extension and the other various influences 

on the curve.

• Region I: Threshold value, A K th, defined as the stress intensity factor range 

below which fatigue cracks do not propagate under cyclic loading. Above 

A K th cracks grow increasing both the crack growth rate and the A K  value.

• Region II: shows a simple log-linear relationship between AK and da/dN 

shown in Eq.5.

• Region III: represents the rapid and unstable crack growth to fracture as Kmax 

becomes equal to Kc.

This method is usually used for assessing the rate of crack extension in relation to 

changes in stress intensity factor range AK. (Ewalds and Wanhill 1996)
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3. WELDING AND WELD FATIGUE PERFORMANCE

Welding refers to a wide variety o f processes in which metals are joined by fusion. 

The metal at the interface o f two or more parts is melted or fused by application of 

intense, localised heat. A filler metal, supplied by an electrode, is commonly used. A 

metallurgical bond is formed as the joint solidifies and with proper selection of 

consumables, the weld should have strength at least equivalent to the base materials.

Welded joint assemblies can carry loads, which are very similar to those the 

component carries without requiring any extra mass or volume to be added to the 

component assembly. Welded joints have a high strength to weight ratio, which 

ultimately compensates for the high processing temperatures and the environmental 

hazards, which are associated with it. (Brandon and Kaplan 1997)

In the automotive industry the commonly used welding techniques include resistance 

spot welding, MIG welding, laser welding and adhesive bonding. The focus of my 

EngD research is on MIG/MAG welds, and therefore will described in more detail.

3.1 Metal Inert/Active Gas (MIG/MAG) Welding

MIG or MAG welding are arc welding processes, which incorporate the automatic 

feeding of a continuous, consumable electrode that is shielded by an externally 

supplied gas. MIG or MAG welding involves similar processes the only differences 

are with the shielding gas. This type o f welding is the most commonly used arc- 

welding technique for sheet metal. The MAG process is suitable both for steel and 

unalloyed, low-alloy and high-alloy based materials. The MIG process, on the other 

hand, is used for welding aluminium and copper materials. The technique is easy to 

use and there is no need for slag cleaning. Another advantage is the extremely high 

productivity that MIG/MAG welding makes possible. (Suban and Tusek 2001)

The principle of MIG/MAG welding is that a metallic wire is fed through the 

welding gun and melted in an arc as shown in figure 3.1. The wire serves the dual 

purpose of acting as the current-carrying electrode and the weld metal filler wire. 

Electrical energy is supplied by a welding power source. A shielding gas that flows 

through the gas nozzle protects the arc and the pool of molten material.
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The shielding gas is either inert (MIG) or active (MAG). In this context, an inert gas 

is one that does not react with the molten material, e.g. argon and helium. Active 

gases, on the other hand, participate in the process between the arc and the molten 

material e.g. Argon containing a small proportion o f  carbon dioxide or oxygen.

Figure 3.1: The MIG/MAG Welding Process

3.2 Weid Defects

Weld defects are primarily geometrical imperfections in the material in the weld joint 

caused by the manufacturing process. Imperfections can be classified into those 

produced on fabrication o f  the component, or those that form during service. 

Welding imperfections are attributed to the welder or the process technique and can 

lead to premature failure of the component in service. The British Standard 

EN25817:1992 governs these imperfections for guidance on the levels of 

imperfections in arc-welded joints in steel.

3.2.1 Geometry Discontinuities

These are problems associated with imperfect shape or unacceptable weld contour, 

and some typical discontinuities are shown in figure 3.2.

■ Undercut is a gap located at the toe or root o f  a weld that occurs when the 

weld metal does not completely fill the gap at the surface of the groove to 

form a smooth junction at the weld toe.

■ Poor Shape is a defect o f  the weld and includes excessive reinforcement on 

the face o f  the weld.

■ Underfill is defined as a depression on the face o f  a weld or root surface 

extending below the surface of the adjacent base metal.

travel

Shielding g as

iolidified wetd metal

i Base metal

m olten m etal
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Figure 3.2: Typical Discontinuities in Welded Joints (Becker and Shipley 2002)

• Lack of Fusion

■ Incomplete Fusion: is a weld discontinuity caused by incomplete 

coalescence between the weld metal and fusion faces or adjoining weld 

beads.

■ Incomplete join t penetration: is a discontinuity in a groove weld in 

which the weld metal has not penetrated through the joint thickness due to 

the filler metal or base metal not filling the root o f  the weld completely.

• Porosity consists o f  cavities or pores that form in the weld metal as a result 

of entrapment o f  gases evolved or air enclosed during the welding process. 

Metals susceptible to porosity are those, which can dissolve large quantities 

o f  gas in the molten pool and then reject this gas during solidification.

• Inclusions are unmelted surface oxides or slag inclusions, which are formed 

during flux-shielded welding.

• Cracking is caused by stress concentration near discontinuities in welds and 

base metal and near mechanical notches in the weldment design. There are 

two types o f  cracks formation -  cold and hot.

■ Cold Cracking -  is where cracks develop after solidification o f  the 

weld, as a result o f  stresses.

■ Hot Cracking -  is where cracks form while a weld is solidifying or 

when a weldment is reheated.

• Lam ellar Tearing -  is a type o f  cracking found to occur in the base metal or 

Heat Affected Zone (HAZ) of restrained welded joints, and results from 

inadequate ductility in the through-thickness direction of the steel parent 

plate. (TWI 1999; Kou 2003)
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3.3 Fatigue of Welds

3.3.1 C urrent Design Approaches

Joining components by welding is the most widespread manufacturing method for 

metal structures; therefore fatigue strength o f  welds is very important as most 

structures contain welds or joints o f  some kind. Much work in fatigue o f  welds has 

been done so far and there are set guidelines available, such as British standards 

BS7608 and BS5400, as to the design o f  welds and/or welded components. They 

assume that any complex weld geometry can be described by one of the standard 

classifications o f  weld configurations.(BS1 BS 5400:Part 10:1980)

Welds give a greater degree o f  complexity as the effects o f  component geometry, 

loading history and the material properties are less well defined. For the purpose o f  

evaluating fatigue, weld joints are divided into several classes. The classification o f  a 

weld joint depends on:

a) The macroscopic geometry o f  the pieces welded,

b) The direction o f  the cyclic loads/stresses, and

c) The location o f  the crack that leads to failure.

Unwelded and welded steels are classified into groups ranging from A, B, C, D, E, F, 

F2 , G, and W. Type A is the unwelded material, the others represent different fusion 

welded joints such as butt, lap, and fillet, under various loading types. Two fillet 

welds are shown below in figure 3.3. Class D refers to a weld, which is loaded 

parallel to the weld toe. Class F2 refers to a partial penetration butt or fillet weld 

loaded perpendicular to the weld toe.

Figure 3.3: Fillet Welds Classes D and F2

The heat from the welding process alters the material properties, creates residual 

stresses and introduces distortions, which results in increased bending stresses. All 

o f  these are difficult to quantify. As a result, baseline data for welded joints is
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usually obtained from full-scale tests o f  various weld joint details. These results are 

then summarized in typical S-N curves, as shown in figure 3.4.

Weld Classification

i i i m i l l  i i i i > m l
10e 107 

Fatigue Life, Cycles

Figure 3.4: Influences o f  Joint Design on Fatigue Life

However these categories are only for fusion welded steel and were created from 

constant amplitude testing o f  thick plate material i.e. thickness >lOmm. (BSI BS 

7608:1993)

The design stress is limited by fatigue failure if components and structures are 

subjected to fluctuating loads. This is particularly true with welded components as 

their fatigue strengths are much lower than unwelded components, and this is shown 

in figure 3.5. Fatigue failure in welded components can occur under both tensile and 

compressive forces and welded joints can fail at nominal stress ranges below 30MPa.

i 300

!
!

to*!</ 10'
Cycles

Figure 3.5: Comparison o f  Unnotched, Notched and Fusion Welded C-Mn Steel 

(Maddox 1991)

Fatigue crack initiation in welded components occupies a relatively small proportion 

of the total fatigue life unlike unwelded components where crack initiation involves 

the majority of the life. Therefore Stage II or crack propagation appears to be 

relevant for welded components. This is due to the joining process being effectively
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the initiation stage. There are several features o f  welded joints that affect the fatigue 

strength and are discussed below.

Welding two sheets together produces a weld bead, thus creating a shape change 

within the structure and hence a stress concentration. The stress concentration occurs 

at the weld toes; the junction o f  the sheet surface and weld metal, and the magnitude 

o f  the stress, depends on the type o f  weld and the transition between the weld and the 

base material:

• Smooth transition -  the stress level will be low

• Abrupt transition -  due to a change in geometry the stress level will be high 

(shown in figure 3.6).

Fillet W eld

iutt W eldW eld Root.

Figure 3.6: Comparison o f  Butt and Fillet Weld Shapes

For some welds, e.g. an attachment weld, the weld itself does not carry or transmit 

load. The weld forms an integral member o f  a component, onto which it is deposited. 

When stressed, the attachment weld or a bracket can still cause stress concentration 

due to the sudden change o f  section.

Fatigue cracks will therefore propagate at these areas o f  high stress concentration 

when the component is under fluctuating loading. The direction o f  loading also has 

an effect. Loading transverse to the toe, the weld toe itself is the most probable site 

for crack initiation, whereas loading parallel to the weld, the discontinuities o f  the 

surface such as surface ripples, or stop/start irregularities can cause stress 

concentrations but are less severe than the toe. Loading parallel to the weld has better 

fatigue strength than loading transverse to the weld.

Weld toe geometry is more complex than the general profile shows and this is due to 

the existence o f  weld discontinuities such as undercutting, intrusions with pre­

existing cracks at the weld toe. These discontinuities compound the stress 

concentrations at the weld toes thus reducing the fatigue strength even more.
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Unfortunately, most fusion welding processes will introduce at the weld toe these 

small crack-like discontinuities. Watkinson and Graville showed that on inspection 

o f the failure site that the cracks initiated from slag inclusions remaining from the 

welding process.

Imperfections such as porosity, inclusions, and lack of fusion also influence the 

fatigue life as they produce stress concentrations, which if more severe than weld 

geometry sites, provide alternative crack initiation sites. Misalignment of the welded 

joint produces a secondary localised bending stress, which under loading increases 

the severity o f the stress on the joint.

Welded joints with partial penetration cause stress concentrations to be localised at 

the root and lack o f penetration area is crack-like so crack propagation is the main 

failure mode. The stresses localised at the root can be more severe than the toe and 

consequently cause crack initiation depends on the joint geometry and the depth of 

penetration.

With unwelded materials the fatigue strength increases with increasing material 

tensile strengths, whereas with welded materials this is not the case as in welded 

joints failure is through crack propagation of crack-like flaws. Propagation o f cracks 

is influenced more by local weld geometries than the complex microstructures 

formed during the welding cycle, as crack growth less sensitive to microstructure.

Extensive testing has been completed on HSS fusion welded fatigue performance to 

determine if  the parent material strength has any influence on performance life. The 

results show that material strength has no effect on the fatigue performance.

Overall the fatigue behaviour of welded joints will vary depending on:

• Joint type

• Loading direction

• Any combination of weld features -  inclusions etc.

The presence o f crack-like discontinuities within welded joints produces a limited 

fatigue crack initiation period, and the factors which influence initiation o f cracks
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have different effects on the propagation o f  the crack which takes up the remainder 

o f  the joints life. So it has been stated that, at welds, which have inclusions, the crack 

has already initiated so propagation o f  cracks is o f  concern.

The fatigue performance o f  steel, as mentioned previously, increases with increasing 

tensile strength. In spite o f  the complexity o f  the steels microstructure, the 

propagation rate o f  a crack does not vary significantly between steels. (Pope 1959; 

Maddox 1991) This indicates that improved fatigue performance can be attributed to 

a longer initiation period as the strength increases. However if  inclusions are 

considered as the start of a crack then only the propagation period is considered, and 

as such steel strength would appear to influence on the fatigue performance o f  

welded joints. This statement is illustrated clearly by figure 3.7.

U ltim ate tensile  s tre n g th  of s te e r  M Pa

Figure 3.7: Effect o f  Steel Tensile Strength on Fatigue Performance o f  Fusion MAG 

Welded Joints (1) Compared to Unwelded (2 & 3) (Maddox 1991)

3.3.2 Methods of Im proving the Fatigue Perform ance of Fusion Welded Joints

Overcoming the problems mentioned in the previous section would aid in improving 

the fatigue performance o f  the joint. There are two main ways to improve weld life:

1. Increase the weld performance through:

a. Toe dressing

b. Needle/shot peening

c. Reduce the defects

2. Reduce loads/stress on welds through

a. Joint design change

b. Gauge increase

c. Dynamic loading reduction
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Removing the intrusions and the high stress concentrations at the weld toe would 

benefit the joint by improving the fatigue life. Machining or grinding the weld toe to 

such a depth where the intrusions are eliminated can accomplish this as shown in 

figure 3.8. Also machining reduces the geometric stress concentration on the joint.

Weld Toe Dressing

Figure 3.8: Weld Toe Dressing to Remove Geometric Stress Concentrations and 

Intrusions

Other postwelding operations such as weld toe grinding or Tungsten Inert Gas (TIG) 

dressing and plasma dressing are useful methods for significant improvements o f  

fatigue life by remelting the weld toe and washing the weld into the parent metal to 

achieve a smoother weld profile. (Millington 1973)

These dressing methods make the slope o f  the S-N curve shallower thus increasing 

the stress endurance limit. Crack initiation along with other defects, now plays a 

significant role instead o f  the predominating factor only being the crack propagation 

so the welded joint behaves like unwelded parent material.

Manufacturing operations prior to welding often produce residual stresses, which 

remain within the material, and these are completely independent o f  loading 

conditions.

During the welding cycle, additional thermal residual stresses can arise primarily due 

to the non-uniform solidification and cooling process, and thus uneven or restricted 

contraction of  metal within the weld and its surrounding region. The magnitude of 

residuals introduced from welding will depend on the strengths o f  the parent material 

and the weld. High levels o f  tensile residual stress can exacerbate fatigue failure o f  

welded joints since it can increase the level of mean stress for the same applied 

cyclic stress range.
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A low tensile residual stress, or better, compressive residual stress field in the weld 

region will be beneficial for weld fatigue. Not only does the compressive residual 

stress minimise the chance o f fatigue crack initiation, but also it hinders the 

propagation of a crack even if  it did manage to initiate.

Therefore, the most effective method for improving fatigue strengths of welds which 

fail at weld toes is through the introduction of compressive stresses. Compressive 

stresses can be produced through cold working o f the welded joint and the most 

common method is by shot or needle peening the weld toe. Residual stress-based 

treatment methods, such as needle peening, work by reducing the effective stress 

intensity factor range, Keff, at the surface, and thus slowing early crack growth.
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4. AUTOMOBILE STRUCTURES

Modem cars are made o f a combination o f steel, aluminium and plastics (un­

reinforced and composites). Steel is by far the most widely used material due to its 

high strength, durability and formability. However there is considerable external 

pressure from environmental groups and government legislation in two areas: 1) 

Reduce Carbon Dioxide (CO2 ) levels to help slow down the effects o f global 

warming; 2) Reduce fuel consumption by reducing the vehicle weight (this is 

important as the cost o f fuel will continue to rise at twice the rate o f inflation due to 

the diminishing supplies and the difficulty in recovering fuel from tar and other 

compounds as oil becomes scarce). This weight reduction may be accomplished by 

either the use o f the latest developments in advanced steels, or through material 

substitution. Currently there are many investigations on the potential use o f high 

strength steels (HSS) and advanced high strength steels (AHSS) for auto bodies e.g. 

the Ultra Lightweight Steel Auto Body (ULSAB) project, or into suspension and 

chassis structures in the Ultra Lightweight Steel Auto Suspension (ULSAS).

The primary structure o f mainstream automobiles consists of the unpainted body 

structure which is also referred to as a body-in-white (BIW), and chassis components 

such as subframes, suspension systems etc.

4.1 Importance of the Chassis

The chassis connects the car body with the road surface via the suspension. Its 

functions are multifaceted and range from providing support and suspension for the 

vehicle mass to supporting, steering and braking the wheels, to transmitting the drive 

torque. These functions demand on the developers not only for the highest level of 

technical expertise concerning the entire process chain, but also for great innovative 

potential.

The chassis consists of the frame, suspension system, steering system, tyres and 

wheels.

• The frame is the structural load-carrying member that supports a car’s engine

and body, which are in turn supported by the suspension and wheels.
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• The suspension system is an assembly used to support weight, absorb and 

dampen road shock, and help maintain tyre contact as well as proper wheel to 

chassis relationship.

• The steering system is the entire mechanism that allows the driver to guide 

and direct a vehicle.

4.2 Land Rover Chassis and Suspension System

Land Rover's Defender, Range Rover and Discovery models are vehicles o f  body-on- 

frame construction each having a separate “ladder” chassis frame, whilst the 

FreeLander is o f  “body frame integral” or monocoque construction.

4.2.1 Ladder Fram e Chassis

This type was widely used in cars until the late 1940s although the current-day Sport 

Utility Vehicles (SUVs) still use this structure. The Ladder frame is a twin 

longitudinal rail chassis that is interconnected by several laterals and cross braces. 

The longitudinal rails are the main stress members as they take the load and the 

accelerating and braking forces, whilst the cross members provide resistance to 

lateral forces and increase torsional rigidity, as shown in figure 4.1 the AC Cobra. 

(Clough 2003)

Figure 4.1: Ladder Chassis

Land Rover Discovery suspension is by double-wishbone front (as shown in figure 

4.2) and rear, and is independent. Base models have coil-sprung suspension, whilst 

higher-specification models get air springs. The air springs will be combined with 

novel active suspension.

34



www.manaraa.com

Front Upper 
Control Arm 
(FUCA)

Figure 4.2: Double Wishbone (Control Arm) Front Suspension

Suspension components must be able to withstand the forces from daily use, and 

these are complex. The complex loading in the suspension system arises from the 

fundamental forces that are generated at the tyre contact patch. These forces act in 

the three primary directions as shown in figure 4.3 and there is an additional torque 

loading from the brake reaction.

The 3 primary forces at tyre contact patch are:

• Longitudinal

• Lateral

• Vertical

Additional Torque Loading

• From Braking (Combined with Longitudinal Force) 

Figure 4.3: Basic Forces Acting on the Suspension

The effects from these forces will be distributed in the suspension system causing the 

components to move in various ways so that the car ride and handling are maintained 

as smoothly as possible. How these forces are controlled by the complex suspension 

structure is shown in table 4.1.

Table 4.1: Forces and Movements Acting on Suspension

Movements Forces
Longitudinal Longitudinal
Lateral Lateral
Ride Vertical
Steer
Camber
Rolling

Braking/
Acceleration
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4.3 Major Design Issues, Philosophies and Challenges

Cars are designed nowadays using Computer Aided Design (CAD) or Engineering 

(CAE) software tools, and are then analysed and tested through complex rig testing 

before full vehicle proving ground testing. With costs o f testing procedures 

increasing and the time for development decreasing, virtual testing through complex 

multibody simulations in FE packages is needed.

4.3.1 Durability Analysis in the Automotive Industry

Traditionally durability of vehicle component and subsystems has been established, 

optimised and verified by testing physical prototypes. Today, increasingly higher 

demands for lighter and more cost-effective structures, together with shorter time to 

market, have been changing design philosophies within the automotive industries. It 

is generally recognised that getting products to market quickly cannot be achieved by 

developing the design mainly through the testing and modification of a series of 

mechanical prototypes.

Designing new automotive models in shorter periods is a challenge, which requires 

the use of Computer Aided Engineering (CAE) analysis. This reduces the reliance on 

physical verification tests at the intermediate design stages, and rig tests are carried 

out for final confirmation o f CAE analysis therefore minimising the number of 

prototype vehicles built.

For these reasons, fatigue life predictions are becoming an essential part of the 

development process for many vehicle manufacturers. There are two main categories 

o f fatigue life computations: 1) Based on measured stresses and strains, 2) Based on 

stresses and strains computed analytically using Finite Element Modelling and 

Analysis.

4.3.1.1 Vehicle Durability

In the past, the customers were the final inspectors and testers of vehicle design due 

to limited knowledge of customer usage. In today’s automotive industry, durability 

and reliability are key areas and using analytical methods for sheet metal structures 

can enhance product quality over more traditional methods.
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• Durability is defined as "the capacity o f  a component or assembly-of-parts to 

endure service duty without premature failures."

• Reliability is defined as "the probability o f  a component or assembly-of-parts 

enduring service duty for a specific life and meeting or exceeding its 

specifications."

• Quality is defined as "products, which meet or exceed customer needs and 

expectations throughout their service life at a cost, which represents value."

Engineers are faced with many decisions during the product development process. In 

the last decade, development times between conceptual design and the finished 

production item have been reduced from approximately five years to around two 

years. The challenge for the testing community is to meet these timing targets while 

retaining quality and durability. This is combined with the need to save weight, select 

optimum materials and economise on production processes whilst satisfying 

operational demands placed on the product. Accurate measurement, data acquisition 

and analysis, and testing are key factors in the process o f  calculating product 

performance. Figure 4.4 shows the effect o f  using CAE durability methods over 

traditional methods with development time.
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Figure 4.4: Product Development Life Cycle Costs (The MSC Institute of 

Technology 1995)

The reduction in prototype vehicle testing is exerting further pressure on the analysis 

community to more accurately predict potential fatigue areas during the design 

development phases. With less time available for building and testing prototypes 

before manufacturing, it has become vital to simulate structures on computers and 

accurately predict potential functional issues. However, there are still many variables 

that analytical methods cannot adequately consider, such as manufacturing processes,
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assembly, material non-homogeneity and residual stresses, although improvements 

are being made in these areas. Laboratory durability testing and vehicle proving 

grounds will still be necessary for both design verification and system or full vehicle 

sign-off. (Berger, Eulitz et al. 2002)

Laboratory-based durability testing is intended to reproduce failure modes and 

locations similar to those observed on the proving ground, but in shorter time and a 

more controlled and reproducible environment. The complexity and configuration of 

the tests required depend on the complexity o f  the components under investigation. 

Therefore, they can range from single to multiple channels o f  synchronous actuation.

Product performance is dictated by the loads experienced in service, the distribution 

of  stresses and strains in the product due to these loads, and the behaviour o f  the 

product materials under these conditions. Combining this information in computer 

models enables rapid evaluation o f  component durability, as shown in the fatigue life 

model figure 4.5. Hence, expensive prototype, laboratory and service trials can be 

minimized.

INPUTS_________________ ANALYSIS________ RESULTS

Material Properties
•Basic m echanical properties 
•Surface conditions

• Polished, carburised  etc 
•E nvironm ent

•T em peratu re, co rrosive etc

Loading Regime
Service Load tim e history

Local Stress 
Information

U

Cycle-by-Cycle 
Damage 

Calculation & 
Accumulation

Critical 
-► Locations 

& Life

-— - >  C om ponen t Geometry-

Figure 4.5: Fatigue Life Model (Five Box Trick) (Plaskitt and Musiol 2002)

4.3.1.2 M aterial Properties

The material properties required for fatigue prediction are how the base material or a 

weld behaves under cyclic loading conditions. Also information on fatigue 

improvement techniques, surface finish and environment are also required. Material 

properties under cyclic loading are used to calculate elastic-plastic stress-strain 

response and the rate at which fatigue damage accrues due to each fatigue cycle.
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4.3.1.3 Loading Regime

Accurate load time history is required for the component being modelled. 

Determining the load time history is a complex task and can be obtained by a number 

o f different methods such as strain gauges and load cells. Care must be taken when 

recording the data to ensure that there is sufficient data to represent the typical 

conditions.

Only rarely can all forces acting on a component built into a subsystem or vehicle be 

measured. In these cases, computer multibody simulations (MBS) can help. Most 

mechanical systems with moving components such as automobiles can be modelled 

as multibody systems. A multibody system, in general, consists of flexible or rigid 

bodies, kinematic joints, springs, dampers, and actuators, which is used to build a 

virtual vehicle model. Computers have aided this by providing the required link 

between applied loads and the stress response at regular intervals across the structure.

4.3.1.4 Local Stress Information

For fatigue life prediction, calculated stress is needed for hot spots or nominal 

stresses. This can be achieved by using finite element analysis. The accuracy o f the 

stress information produced is dependent on the geometry of the specimen, as the 

actual stress state in the weld is difficult to determine. In this context, the geometry is 

used to describe how loads are transformed into stresses and strains at a particular 

point on the specimen, and this can be difficult to model.

4.3.1.5 Cycle-by-Cycle Damage Accumulation

With the accumulated data from the three inputs, a stress time history is generated 

and then broken down into the individual cycles, usually by a “rainflow cycle 

counting” method. From this the fatigue life can be determined. (Fermer and 

Svensson 2001; Plaskitt and Musiol 2002)

4.4 Drive for Lightweight Vehicles

Cars are part o f our culture and will continue to be in the foreseeable future and over 

the last 10 years and especially in the United States, more people are buying less 

fuel-efficient sport utility vehicles (SUVs), mini-vans and trucks instead of the 

lighter weight saloon cars.
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Modem trends regarding the environmental impact of motor vehicles are forcing 

automotive manufacturers to produce lighter and more fuel-efficient vehicles. 

Vehicle structure offers an appropriate scope for potential weight saving, with the 

BIW providing the largest contribution through the use of new technologies or new 

lightweight materials. Recent developments have revealed that up to 30% reduction 

o f the total weight o f the car can be achieved by substituting steel with aluminium- 

alloy. However, the substitution o f one material by another may give rise to various 

problems, and one o f them is the method of joining.

The critical issue is the transportation sector's impact on global warming, and the 

best way to reduce carbon dioxide is to reduce fuel usage or increase fuel efficiency. 

Concerns over environmental impact o f fossil fuels has galvanised the international 

community to reduce emissions. The stringent safety measures and comfort systems, 

required in cars are making them much heavier. New lightweight materials are thus 

required to reduce the weight.

A Frost and Sullivan research report shows that 75% of fuel consumption relates 

directly to the vehicle weight and, therefore, potential reductions resulting in price- 

performance ratio would drive lightweight materials usage in automobiles. 

Combined with increasing fuel efficiency demands, the automotive industry is 

looking for lightweight materials to achieve this. A 10% vehicle weight reduction 

would give a 6-8% improvement in fuel efficiency, which results in approximately 

20kg reduction in carbon dioxide per kilogram of weight reduction over the vehicle's 

lifetime. (Wallentowitz, Leyers et al. 2003; Neard 2004) Alongside these tougher 

legislative environmental demands there are market and business pressures, which 

require reduction in product development and manufacturing costs and lead-time for 

new products to enter the market. This has a negative impact on the new 

technological innovations, which usually occur for new models. (Pekkari; Evans, 

Crawford et al. 1997)

Steel dominated the automotive market from the first commercial development of 

automobiles, but with current trends the usage of steel has steadily declined 

throughout the last decade. In 1990, 75% of the car weight was steel whereas 

currently steel comprises nearly 70%. This is due to alternative materials like
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aluminium, magnesium, plastics, composites and glass. (Johnson and Mascarin 2002) 

Automobiles are roughly composed o f  70% steel (55% plain carbon steels, 15% 

special steel), 6% aluminium and 7% plastics (average in 1992). Figure 4.6 shows 

the weight o f  the materials used to produce a typical family car.
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Figure 4.6: Material Usage o f  Typical Family Cars between 1977 & 2001 (Haight 

2003)

New materials are considered for incorporation into vehicle to satisfy fuel efficiency 

regulations, only if they provide benefits at an affordable cost. However new 

materials have many properties, which are required, including the effects on vehicle 

dynamics, durability (warranty), damageability, repair, and crash worthiness. All 

these are related to the effect o f  metallurgical characteristics and the impact of 

manufacturing practice on material and product performance. (Cole and Sherman 

1994)

Different lightweight materials are currently available including high strength and 

ultra high strength steels, aluminium, magnesium and various composites. High 

strength and ultra high strength steels have already proved to be a cost effective 

solution in lightweight vehicle bodies. In the well-publicised ULSAB project, it was 

shown that a reduction in body-in-white mass of 25% is possible for a medium-sized 

car and also that a potential for cost reduction exists in parallel to weight reduction 

when using these materials.
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5. SHEET STEELS FOR AUTOMOTIVE APPLICATIONS

Sheet or strip steel has been used over the last 20 years in automobiles and comprises 

around 70% of a typical car's weight and with current international recycling 

directives coming in, steel is one of the most recyclable material available. (Wards) 

This has been achieved through improvements in the modem steelmaking process, 

which aided the development o f High Strength Steels (HSS) while maintaining the 

desired properties o f them.

Sheet steels are available in either hot rolled or cold rolled or coated conditions. Hot 

rolled sheet steels are produced from the rolling o f steel slabs at temperatures over 

850°C, and have a thickness o f 1.6mm or greater whilst cold rolled steels have 

thicknesses less than 1.6mm due to the further reduction o f the hot rolled product at 

room temperature. Automotive applications use cold rolled steel with a thickness of 

about 0.6mm for body panels, but up to about 4mm thick for structural components.

High strength steels are produced in both the hot and cold rolled conditions and are 

becoming increasingly part of the modem vehicles and are also being highly 

researched with the aim to reduce the automotive weight.

5.1 High Strength Steels

For automotive applications, the steel industry can provide automotive designers 

with an extensive range of high strength sheet steels, which are being aggressively 

explored for cost-effective solutions for vehicle light-weighting and thus improved 

fuel economy. These steels combine good formability with higher strength and are 

considered for many safety-critical structural applications. With these unique 

properties, they can be closely matched to a required performance. The use o f high 

strength steel grades has increased by 162% since 1977 and has replaced the older 

carbon steel grades according to the American Metal Market. (Hartmann, 

Heidtnamm et al. 1997; Newsletter 1999; Abdalla, Neto et al. 2001)

Strengthening of sheet steels can occur through the following methods:

• Grain refinement,

• Solid solution strengthening,

• Transformation hardening
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• Precipitation o f  second phase particles i.e. pearlite, bainite, martensite.

Finer grains and precipitations within structures hinder dislocation movement and 

consequently enhance the mechanical properties. Figure 5.1 shows the relationship 

between total elongation and tensile strength o f  several classes o f  sheet steels 

available to the automotive industry.

Figure 5.1: Strength-Formability Relationships for Mild Steel, Conventional HSS 

and AHSS. (Shaw and Zuidema 2001)

The main difference between HSS and AHSS is their microstructure; AHSS are 

multiphase steels containing sufficient quantities of martensite, bainite and/or 

retained austenite to produce the desired mechanical properties. AHSS also have 

superior strength in combination to good formability due to strain hardening arising 

from their low yield strength to ultimate tensile strength ratio. (ULSAB-AVC 2001)

Micro-alloyed Steels -  Also commonly known as High Strength Low Alloyed 

(HSLA) steel, where small quantities o f  niobium, titanium and/or vanadium used 

individually or in combination are added to low carbon aluminium-killed steels 

(aluminium-killed steel is steel deoxidised with aluminium in order to reduce the 

oxygen content to a minimum so that no reaction occurs between carbon and oxygen 

during solidification). The higher strengths occur from the precipitation hardening o f  

the ferrite, and thermo-mechanical treatment during the hot rolling leading to a finer 

grain size. These steels have yield strengths in the range o f  300 -  550MPa.

5.2 Fatigue of High Strength Steels (HSS)

Steels are still among the most important engineering materials, and therefore their 

fatigue properties still remain o f  great interest to engineers. Also there are a wide
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variety o f steels, which exhibit a comparable range o f different microstructures, 

improving the understanding in their fatigue properties therefore remains a challenge. 

Fatigue damage o f steel undergoes the same three stages as all other materials -  

crack initiation, crack propagation and fracture. These stages are influenced by 

several factors such as microstructure, chemical composition and tensile strength. 

Significant improvements in fatigue performance have come from the understanding 

o f complex chemistries and the extensive use o f thermo-mechanical processing. 

Thermo-mechanical treatment o f steels exploits the effect o f plastic deformation on 

the austenitic microstructure to produce the required microstructure properties.

5.2.1 Effect of Microstructure and Composition

Various mechanisms o f strengthening exist including solid solution, grain 

refinement, and precipitation mechanisms. Through various investigations it is 

noticeable that mechanisms, which suppress the dislocation movement, like solid 

solutioning and precipitation, have a beneficial effect on the increase in fatigue limit 

as the tensile strength increases.

During the initial stages of fatigue in metals, mechanical properties change as the 

distribution and density o f lattice defects changes throughout the material. Localised 

plastic deformation is responsible for initiation and propagation of the crack and the 

materials microstructure influences both of these stages by inhibiting or modifying 

the deformation process. The microstructure also determines whether the cracking 

process is changed from ductile to brittle, plastic deformation to cleavage. (Klesnil 

and Lukas 1967)

Some attributes, which affect fatigue, are:

Grain Size: For most metals, smaller grain size results in higher yield strength 

and, as a result, longer fatigue lives. However, the presence of surface defects or 

scratches will have a greater negative influence on fatigue lives than that from 

coarser grains. Researches have suggested that the greatest effect that grain size 

has on fatigue is in the low-stress high-cycle fatigue (HCF) regime.

Alloys of identical chemical composition can have significantly different fatigue 

limits depending on the sizes o f their grains. The fatigue limit is proportional to the 

square root o f grain diameter, which is also the relationship that exists between the
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yield strength and grain size. Cazaud observed that with mild steel increasing the 

grain size has a declining effect on the endurance limit. (Cazaud 1953)

• Alloying: The influence o f chemical composition on fatigue is approximately 

proportional to its influence on tensile strength. So additions o f carbon, and 

other alloying elements will increase the fatigue limit.

• Second phases: These affect crack propagation due to the strain caused by the 

presence of the second phase, the stress concentration of the second phase 

(shape, distribution) and the nature of the bond.

In alloys, where a second phase is used for strengthening, spherical dispersion o f

the second phase provides superior fatigue properties at the same strength level.

• Work hardening: Work-hardened alloys show lower crack propagation rates 

and small deformation increases during fatigue. Cold working can increase 

fatigue strength.

• Heat Treatment: Fatigue strength is generally increased by any heat treatment 

that increases tensile strength.

In welded structures all the material benefits from the heat treatment occurring from 

the welding sequence, unfortunately as the microstructures change the benefits 

vanish due the heat affected zone.

5.2.2 Effect of Yield and Tensile Strength

In metallic materials, there is a direct correlation between the tensile and fatigue 

strengths. Fatigue strength o f high strength steels increases with the simultaneous 

increase in tensile strengths due to an increased crack initiation period. For many 

years, it has been known that the fatigue performance of unnotched specimens is 

approximately proportional to the tensile strength.

There have been a number of reports relating to fatigue strength with respect to 

tensile strength. Lewis studied the effects o f fatigue performance on unwelded and 

fusion welded Carbon Manganese (C-Mn) HSS and compared to TRIP 

(Transformation-induced Plasticity) steels o f similar tensile strength. In the unwelded 

condition fatigue life increases simultaneously with material strength, whereas in the 

welded condition, at lives o f 105 cycles TRIP steels have better fatigue performance 

than C-Mn steels. (Lewis 1996)
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Due to their high strength, the TRIP grades have significantly better fatigue 

properties than conventional steels. Furthermore, they are improved by the paint 

baking treatment. Fatigue strength is generally expressed as an endurance limit, 

corresponding to the maximum stress for a given number o f cycles to failure.

Sperle and Trogen showed that with increasing tensile strength the fatigue strength 

also increased, and from their studies o f the influence o f yield ratio on fatigue 

strength, fatigue strength to tensile strength ratio increased with increasing yield 

ratio. The results concluded that yield strength must strongly influence fatigue 

strength o f unnotched base metal. (Sperle 1989)

Tomita et al investigated the effect on fatigue strength o f sheet steels with respect to 

surface roughness and subsequently found that fatigue life is influenced strongly by 

the surface roughness condition and can often be treated as being similar to a notch 

effect. (Tomita 2000)
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6. FE-BASED FATIGUE LIFE PREDICTION FOR WELDED

STRUCTURES

6.1 Finite Element Analysis

Finite Element Modelling (FEM) is based on the idea of building a complicated 

object with simple blocks or dividing it into small pieces known as “elements”. FEM 

consists of a computer model o f a material or design that is stressed and analysed for 

specific results and is used in new product design and existing product refinement.

FEM uses a complex system of grid-points called nodes, which make a grid called a 

mesh. This mesh is programmed to contain the material and structural properties, 

which define how the structure will react to certain loading conditions. Nodes are 

assigned at a certain density throughout the material depending on the anticipated 

stress levels of a particular area. Regions which may experience a high level o f stress 

usually have a higher node or mesh density. Points of interest may consist of: 

fracture point of previously tested material, fillets, comers, complex geometry, and 

high stress areas. The mesh acts like a spider web in that from each node, there 

extends a mesh element to each o f the adjacent nodes. This web of vectors is what 

carries the material properties to the object, creating many elements. Specific loading 

conditions are applied to a system then analysed, and subsequently reprocessed for 

the required data.

FEM has become one o f the most widely used analytical techniques for the task of 

predicting failure due to unknown stresses by showing potential problematic areas in 

a component/structure and allowing designers to visualise all o f the theoretical 

stresses within. This method of product design and virtual testing is far superior to 

other methods, especially in helping reduce development and manufacturing costs, 

which would be accmed if each design option for a component was actually built and 

tested.

FE modelling is a three-stage process: ‘pre-processing’, ‘analysis’ and ‘post­

processing’.
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6.1.1 Pre-Processing

This stage involves many steps such as building Geometry, creating FE Mesh, 

applying Boundary and Load Conditions, inputting Material Properties, and 

conducting Pre Analysis checks.

• Geometry: - The first step is to generate the computer model representing a 

real life component or coupon. This forms the basis onto which loading 

conditions are applied.

• FE Mesh: - This step involves taking the geometry model and dividing it up 

into a mesh of nodal points, which forms the basis o f the elements, i.e. each 

element is defined by four nodes. Figure 6.1 shows a diagram of how the 

welds are modelled in the current study.

Weld
Element

MIG
Base
Elements

£  Common N ode Connections

Figure 6.1: Diagram Showing How a Weld in MSC Patran is Constructed and a 

Typical MIG Weld

• Boundary Conditions: - Application o f boundary and load conditions is 

applied to the FE model to represent the loading and how the component is 

constrained in the physical tests.

• Material Properties: - Specific material properties are applied to the FE 

Model and are generic so each model contains the same information therefore 

comparisons can be made directly between models.

For a linear-elastic FE analysis, the required material properties include Modulus of 

elasticity (Young’s Modulus) and Poisson's Ratio.

6.1.2 Analysis

This stage involves selecting the correct outputs i.e. the required analysis, resulting 

stresses (Maximum Principal, Von Mises, Tresca) and strains which get compiled 

before being processed. This is the most computer intensive part o f the process. In 

essence, it involves solving simultaneous equilibrium equations. Each equation
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represents the balance of a component’s internal forces (e.g. due to elastic 

deformation) with externally applied forces at each node and in one particular 

direction, known as a degree of freedom.

6.1.3 Post Processing

This stage involves representing the results by displaying illustrative animations of 

the deformation behaviour, the resulting stresses in the time range, damage 

distribution of the FEM model, and detailed analysis of stress-time series etc.

6.2 Computer Aided (Fe-Based) Fatigue Analysis

Finite Element Modelling (FEM) is a long established CAE analysis tool, which is 

widely used, in all-engineering industries. Fatigue analysis is becoming increasingly 

easier, faster and more cost effective due to the vast improvements in computer 

power, speed and software packages. FEM is on the increase as an effective tool in 

tackling durability problems. Modem software enables the design engineer to have 

an input into the final component from the concept stage through to the final ‘sign -  

o ff  test.

In the automotive industry there is a drive to decrease the development lead-times 

and costs for new car models. To achieve this automotive manufactures have 

increased their usage in CAE tools at all stages of vehicle development. There is a 

need to conduct CAE durability analysis in the early stages of design to ensure that 

fatigue related problems are reduced or removed before any costly prototypes are 

made.

Most early design phase assessments using CAE analysis include crashworthiness, 

stiffness and modal analysis. Current processes at the early design stage include CAE 

assessments to identify and prevent durability related failures. Early fatigue and 

durability assessments using CAE tools should aid in preventing new model 

developments failing at later stages i.e. track testing or laboratory durability testing, 

which would cause longer new model lead times and elevate the development costs. 

So for automotive manufacturers, having accurate and efficient CAE durability 

analysis tools for vehicle structure manufacture is essential.
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In weld fatigue, joints in components are stress raisers and fatigue cracks are more 

likely to propagate from the highest stressed region in a component.(MSC 1999; 

Gao, Chucas et al. 2001; BSI BS 7608:1993) Therefore to prevent over-design in 

fatigue critical components whilst maintaining the safety margins, placement o f 

welds is important. FE models must be constructed carefully and compared with 

specimen testing and full sized component testing. FEM is used to calculate a stress 

distribution for an entire component or structure and so provides an ideal precursor to 

fatigue analysis. All analytical components require correlation with something 

physical to validate the analytical model so that the results generated are realistic. 

This is the reason simple geometry tests and full sized component test programmes 

are combined with FEM. Finite element analysis therefore offers an effective tool for 

evaluating fatigue durability problems.

It is essential to be able to identify fatigue hotspots and predict time to failure in a 

given real-life loading environment. Predicting fatigue life is a critical aspect o f the 

design cycle because virtually every product manufactured will wear out or break 

down. The critical issues are whether the product/component/assembly will reach its 

expected life, and if damaged, whether the product/component/assembly will remain 

safely in service until the damage can be discovered and repaired. As with most 

simulation analysis, the earlier the fatigue analysis is deployed in the product 

development process, the more benefits will be realized, including safety and 

economy.

6.2.1 Metal Fatigue CAE: Stress-Life Approach

Metal FE fatigue analysis for stress-life (S-N) method uses linear - elastic analysis 

methods. The S-N method is used in a variety o f situations including long life fatigue 

problems where there is little plasticity, and for components where crack initiation or 

crack growth modelling is not appropriate, such as non-ferrous materials, 

composites, welds, and plastics. The S-N method may be summarized as follows:

1. Linear static FEM derives the local stress time history from the load time 

histories, including superpositioning of multiple FEM/load time history load 

cases. Many structural fatigue analysis problems can be treated as linear static 

problems, scaled by load time histories. Linear Superposition is accomplished 

using the following Eq.6.
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Where Pk(t) is the force time history, Pkjea is the magnitude of the force used to 

produce the static load case and a^k is the static stress component for load case k.

2. However, it is important to ensure that the S-N data applies to the situation 

being modelled; most S-N curves are for nominal stress, not local stress.

3. Extract the fatigue cycles in the local stress time history by means o f a 

rainflow algorithm.

Rainflow Counting

Matsuishi and Endo developed Rainflow cycle counting in 1968, with the name 

deriving itself from an analogy they used. (Matsuishi and Endo 1968) Plotting a 

stress/strain time history and orientating it vertically, a series o f 'pagoda roofs' are 

created, and the cycles are defined by the way rain would fall off the roofs as shown 

in figure 6.2. This method of counting requires a set o f rules to be followed correctly: 

The load sequence must start and finish at the same stress or strain value 

Flow begins at each reversal and continues until: 

o It encounters an earlier Rainflow

o It began as a local maximum and falls to the opposite local maximum 

which has a greater value than at the beginning 

It began at a local minimum and falls opposite a local minimum with a greater value 

than at the beginning.
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Figure 6.2: Rainflow Cycle Counting Method

Rainflow counting is easily done for simple load histories yet with more complex 

histories a computer program is better used for implementing this method. 

(Bannantine, Comer et al. 1990; Dowling 1993; Dieter 2001)
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4. Assess the damage contribution of each cycle by referring to the selected 

damage curve. Linearly sum the damage associated with each cycle by using 

Miner’s rule.

Miner’s Rule

The Linear damage rule is based on the concept of fatigue damage. A damage 

fraction, D, is defined as the fraction o f life used up by an event or a series o f events. 

The damage criterion for failure is assumed to be equal to 1.0.

The linear damage rule states that damage fraction, at stress level oj, is equal to 

the cycle ratio n-fNu where niy is the number o f cycles observed at the stress level and 

Ni is the number of cycles to failure at the same stress level.

The failure criterion can now be identified as the sum of the damage where the life to 

failure can be estimated by summing the percentage of life used at each stress level 

as shown in Eq.7.

> 1 Eq.7
N,

6.2.3 Metal Fatigue CAE: Strain -  Life Approach

Strain Life (E-N) analysis uses cyclic stress-strain modelling and Neuber's elastic- 

plastic correction (or modifications o f Neuber’s method such as Seeger-Beste or 

Merten-Dittman). Typically, the E-N method is used for components or metallic 

structures that are mostly defect-free and for locating where a crack could begin. The 

strain-life method may be summarised as follows:

• By means of linear elastic FEM derive the local stress-strain time history 

from the load-time histories, including superpositioning of multiple FEM 

Load-time history load cases (or use stress-strain time history directly from 

linear transient or forced vibration FE analysis).

• Extract the fatigue cycles in the local stress time history by means of a 

rainflow algorithm (as in section 7.4.2.1).

• Make the elastic-plastic correction using the Neuber's rule.

• Model the fatigue crack initiation process using hysteresis loop simulation 

based on the cyclic stress-strain curve.
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• Assess the damage contribution of each closed hysteresis loop by referring to 

the selected damage curve. The damage curve selected is based on the mean 

stress correction model used— Smith-Watson-Topper or Morrow.

• Linearly sum the damage associated with each cycle by using Miner’s rule (as 

in section 7.4.2.1).

Neuber’s Rule for Plasticity Correction

This rule allows for the fact that the material may yield. The local stresses and strains

around a notch can be determined using the elastic stress concentration factor Kt.

Figure 6.3 shows where the nominal and local maximum stress concentrations are.
y— Nominal Stress-Strain (S,e)

/  Region

Local Stress-Strain (a,£)
R egion

Figure 6.3: Nominal and Local Stress Regions (Bannantine, Comer et al. 1990)

As the nominal stress increases Kt remains constant until yielding begins. Upon 

yielding the local stresses and strains are no longer linearly related so Kt can no 

longer be used to relate local values to nominal values. For plastic deformation, 

Neuber proposed that Kt is equal to the local stress and strain concentration factors 

where:

K„ = ^saL  K„ Eq.8
^ ' nom ^  nom

Neuber's Rule is shown in Eq.9 (Bannantine, Comer et al. 1990)

K, = jK „ K e or K 2Ao„„mAe,nm = A aA s  Eq.9

6.2.3 FE -  Based Fatigue Analysis

Welds inherently represent a geometric discontinuity, which poses problems for the 

FE analysis. Local geometry around welds in welded components dominates the 

fatigue performance and high levels of stress concentration therefore arise at the 

welds. FE cannot accurately assess the real stress at the fatigue critical locations so 

an indirect approach is required. Notches and comers in components are difficult to

P \
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be assessed for their stress and strain levels therefore correct fatigue damage 

parameters are required.

For predicting fatigue life of welded components, four methods are used in industry:

• Nominal Stress

• Hot Spot or Structural Stress

• Effective Notch Stress

• Linear Elastic Fracture Mechanics (LEFM)

O f these methods, only nominal and structural stress are described in this thesis, as 

they are particularly relevant to durability assessment of automotive structures.

6.2.4 Nominal Stress Approach

The nominal stress approach is the simplest out of all the approaches. Fatigue 

assessment according to the nominal stress approach uses standard S-N curves and 

detailed classes of the basic joints. These can be found in many standards and 

guidelines. The nominal stress is defined as the stress calculated across the sectional 

area and disregards the local stress effects of the welded joint whilst including the 

effect o f the component shape in the area of the joint. The nominal stress is the 

maximum stress due to sectional forces or moments or the combination of the two at 

the location of possible cracking. In this approach, neither the weld toe nor the 

properties o f the material constitutive relations are taken into consideration. The S-N 

curve resulting from this analysis is unique to the structural detail for which it is 

established. Fatigue lives for components containing a notch can be calculated using 

the S-N curve with a factor that corresponds to the component's geometry or type o f 

notch. Nominal stresses can vary over a section and can often be calculated using 

basic theories of structural mechanics, although for more complex cases Finite 

Element Modelling (FEM) may be used. (Dowling 1987; Moan and Berge 1997; 

Fricke 2003)

Determining the nominal stress o f the component for which the fatigue prediction is 

required is generally carried out with Finite Element Analysis (FEM). However, care 

must be taken to ensure that all stress raising effects of the structural detail o f the 

welded joint are excluded when calculating the nominal stress.
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Having obtained the component nominal stress and the relevant S-N curve, these are 

put into the five-box process as described in section 4.3.1., and the analysis 

completed.

Weld Classification Method

This is the more traditional method o f weld fatigue analysis requiring the use of the 

BS7608 and BS5400 standards and is often used in several o f the different 

approaches mentioned below. This method requires experience of engineering and 

the ability to understand the standard and classify welds. The engineers using this 

technique need a level o f subjectivity, which comes with experience. Loading of the 

welds needs to be simplified into major levels and directions, which is difficult to 

apply for multidirectional and variable loading for complex structures such as chassis 

systems. Therefore the more complex FE techniques attempt to address this problem.

6.2.5 Hot Spot or Structural Stress Approach

The hot spot or structural stress approach takes the nominal stress method one stage 

further and considers the stress increase due to the structural configuration, i.e. the 

macro-geometry. This approach is especially suited for situations in which a simple 

nominal stress for welded joints is difficult or impossible to compute due to complex 

geometrical effects in the weld or the surrounding structure, or where there is no 

classification o f the joint. However, this method is limited to determining the fatigue 

performance at the weld toe. (Mansour, Wirsching et al. 1995)

For a welded joint submitted to cyclic loading, the critical points where cracks 

initiate are usually located at the weld toes. These highly stressed zones can locally 

heat up, due to high levels of repeated plasticity, when subjected to high cyclic loads, 

hence termed 'Hot Spot'. The actual stresses responsible for fatigue damage at hot 

spots are extremely difficult to determine, due to the complex local stress distribution 

around the weld toe. (Radaj 1987)

The stress used in this approach is commonly called the hot spot or geometric stress 

and includes all stress raising effects o f the structural detail at the toe, such as the 

membrane and the shell bending stress, while excluding all non-linear stress 

concentrations due to the weld profile. Structural geometric stress, a geo, is usually
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encountered in plate, shell, and tubular structures. This method is recommended for 

welded geometries that have no clearly defined nominal stress because o f  

complicated geometries. Therefore the stress value is determined by global 

dimensions and loading parameters o f  the component in the vicinity o f  the joint. 

Geometric stresses can be divided into the membrane stress and the shell bending 

stress components.

The geometric stress has to be determined in the critical location o f  the welded joint, 

i.e. at the weld toe, where crack initiation is expected. Figure 6.4 shows the 

determination o f  the hot spot stress.

Figure 6.4: Determination o f  the Hot Spot or Structural Stress Concept

For both the nominal and hot spot concepts, the structural stress is determined in the 

critical location o f  the welded joint where crack initiation is expected to occur by 

measurement or calculation as shown in figure 6.4. Analysis o f  a structural 

discontinuity to obtain geometric stresses by using analytical methods is not possible. 

Therefore FEM analysis is applied, and the principal stresses are calculated.

The geometric stress can be measured through strain gauges placed at particular 

distances from the weld toe and then extrapolating the stresses from the gauges. 

Placement o f  the gauges must lead to reasonable extrapolation to the weld (critical) 

point, so distances are proposed by Nieme of 0.4t and l.Ot from the toe, where 'f is 

the sheet thickness. For much coarser meshes, gauges are placed at distances 0.5t and 

1.5t from the weld toe. If the sheet is thin the gauge should be situated 0.3t away 

from the weld toe. The distances proposed by Nieme were selected to be as close as 

possible to the weld toe but outside the region affected by the weld toe singularity. 

(Nieme 2001)
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To define the fatigue performance of the component an S-N curve is generated and 

the curve is then applied with the damage summation theory at the hot spot to 

determine an appropriate life. (Poutianinen, Tanskanen et al. 2004)

There are several methods available for FE analysis of weld fatigue such as 

MSC.Fatigue & FE-Fatigue, FTOW (Ford's in-house "Fatigue Life O f Welds" 

program or the Battelle Technique), LMS -  FALANCS, FEMFAT (finite element 

modelling / fatigue), FE-Safe Verity.

MSC.Fatigue (MSC Software) and FE-Fatigue (nCode)

FE-Fatigue and MSC.Fatigue have similar capabilities and use the same well-proven 

nCode technology in different operating environments. MSC.Fatigue is integrated 

into MSC.Patran software so accesses a wide range o f  FE analysis. FE-Fatigue is a 

separate product, which directly accesses result files from a variety o f  industry- 

standard FE codes.

MSC.Fatigue is a structural stress based technique whereby welds are represented by 

thick shell elements as shown in figure 6.5a. These elements are relatively stiff when 

compared to the neighbouring shell elements representing vehicle parts. Weld failure 

is predicted currently at weld toes as shown in figure 6.5b. The damage parameter 

used in this technique is the "structural stress". Structural stress is the principal stress 

value at weld toes (top surface), originally determined from weld toe forces and 

moments. Currently the stress is calculated using the Nastran "cubic" option for 

nodal stress extrapolation. Weld toe bending (tlex) ratio is also calculated to 

determine whether the weld toe is predominantly in bending or tension. Results from 

this analysis produce two curves, one for bending (flexible) and one for tension this 

is shown in figure 6.5c. These curves were produced with the understanding o f  the 

assumption that certain weld quality was o f  an acceptable standard.

Stress at weld  
toes =  failure 
locations

a)

id mg

Tension

Figure 6.5: a) Element Size, b) Weld Representation, c) Bending & Tension Curves
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This process uses simple and coarse elements for the welds and doesn't require the 

weld classification input. Although the cubic stress value may be dependent on 

element size so a valid range of  element sizes will be used. At present, in fatigue life 

assessment, either the "bending" or "tension" S-N curve is used, rather than one that 

is based on the weld toe-bending ratio.

FLOW  (Battelle Method)

The Battelle technique inside FLOW (Fatigue Life O f  Welds) is a user-friendly CAE 

technology developed by Ford Motor Company in conjunction with Battelle 

providing fatigue characteristics for continuous and discrete connections between 

sheet metal. It is compatible with other software systems such as MSC.Nastran, 

HyperMesh and IDEAS. With weld fatigue life, maximum equivalent stresses are the 

current results from the FE analysis. (Kyuba and Dong 1993; Dong, Hong et al. 

2003)

This is a nodal force method and a "structural stress" technique in which welds are 

represented by thick shell elements. Although depending on the weld penetration 

level there is a difference in the way parts are connected. For full penetration welds 

are formed as triangles as shown in figure 6.6a, whereas partial penetration only the 

inclined elements are connected as shown in figure 6.6b. Failure locations predicted 

by the technique are at the weld toe and across the weld throat.

a) b)

Figure 6.6: a) Full Penetration Weld, b) Partial Penetration Weld

Damage is calculated using the total stress equation:

Total stress = Structural Stress + Notch Stress.

Structural stress balances the applied loads and is determined from FE nodal forces 

followed by post processing using elastic shell theory shown in figure 6.7a. Whilst 

notch stress is self-equilibrating, S-N data captures notch and residual stress effects 

as shown in figure 6.7b.
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a)

—

Figure 6.7: a) Structural Stress Approach, b) Notch Effect

A single master S-N curve for each welded material or one master curve for all steels 

based on the received wisdom that parent metal grades make little difference in weld 

fatigue with the certain acceptable weld quality is assumed. The welds consist of 

simple and coarse elements, with no weld classification required whilst the stress 

values at the weld are claimed to be insensitive to the FE element mesh size. 

Unfortunately this technique is unavailable in commercial codes.

Fe-Safe Verity™ (Battelle Method)

This is the new Battelle methodology known as the Verity™, which has been 

developed in collaboration with over a dozen leading engineering companies, 

members o f  Battelle’s Joint Industry Project (JIP). Verity™ is a mesh-insensitive 

structural stress methodology so that detailed FEA models are not required. The 

method can be applied equally well to structural welds in thick plate, seam welds in 

thin sheets, and spot-welds. It is compatible with other software such as HyperMesh 

where a tool exists to support Verity, Nastran, ABAQUS and ANSYS for post 

processing.

The Verity method is a major departure in that it uses nodal forces to determine a 

‘structural stress’ at the weld toe so that the user does not need to determine nominal 

stresses at some distance from the weld toe. A single S-N curve can then be applied 

to all types o f  welded joint to a good level o f  accuracy. This avoids the ‘weld 

classification’ problem, because the stress refers to the weld toe there is no ‘distance’ 

problem, and the method is insensitive to mesh density and element type. It can also 

be applied to a much wider range o f  welds - structural welds, spot welds, etc, all with 

a single S-N curve.

Verity is a module within the fatigue analysis software Fe-Safe, which computes 

equivalent structural stresses, based on the Battelle “structural stress’’ method and
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uses these stresses to calculate the fatigue lives. The method is described in detail in 

chapter 10.6.

LMS-FALANCS

LMS International developed this software. (LMS 1999-2000)

This is a stress concentration factor technique, which is based on a German research 

consortium’s research. RIM S (Radius 1mm with Mean stress and Scatter) with 

notch radius o f 1mm is shown in figure 6.8, whilst R03MS has a radius o f 0.3mm 

used for thin sheets. LMS has two approaches for RIM S -  Detailed or Coarse. Weld 

failure can be predicted at both weld toes and roots.

r=1mm /

. ^  ( ! \ >  

r=1mm

Figure 6.8: Showing the Location of Radii

The detailed method involves the stress being obtained from the FE model directly, 

which provides more accurate results. For the coarse method the stress is determined 

by multiplying nominal stresses from the coarse FE model with notch factors stored 

in a database which is more consistent with current FE practice for vehicle modelling 

i.e. shell representation of vehicle structures. The curves produced are one S-N curve 

for steels and for aluminium alloys. This is based on experimental evidence that weld 

performance o f parent material is dominated strongly by the welds local geometry.

Unfortunately this is essentially a weld classification method, which relies on 

analyst's experience, and for thin walled parts -  plate thickness t<2mm verification is 

required. The types of welds available in the weld notch factor database will limit the 

coarse method.

FEMFAT

Magna / Steyr-Daimler-Puch developed FEMFAT (Finite Element Method / 

Fatigue) software for fatigue simulation o f dynamically loaded components. The 

calculation methods for the influencing parameters considered in this software are
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fixed by German guidelines such as FKM or TGL. (Brenner, Unger et al. 1998; 

Unger, Dannbauer et al. 2003)

This technique uses no special weld elements only straightforward connections 

between parts. Weld configurations and seams are determined by assigning proper 

material types e.g. MAT 105 to parts being welded as shown below in the butt welds 

and t-joint in figure 6.9a and b.

M A T  1 0 6  M A T  1 0 7
MAT2Q5J

C 1 0 1
a)

MAT 201 |  MAT 202

b)

Figure 6.9: Example o f  a) Butt Weld, b) T -  Joint

Weld locations are either the weld end or within the weld line by specifying the weld 

node colour e.g. C l 00. Failure locations predicted by this technique are at the weld 

toe or root if  weld notch factors exist. The damage parameter is the stress normal to 

the weld line at weld toes and or weld root. This is a stress concentration factor or a 

notch factor method like LMS-FALANCS. The database of weld notch factors and 

weld material data is predetermined and coded into the software. The weld stress 

value is calculated by multiplying the nominal stress by the relevant concentration 

factors. Notch factors are determined by FEM or welds and based on the LMS- 

FALANCS RMS method. For the parameters such as sheet thickness and loading 

modes they have connection methods. The predicted results are produced in one S-N 

curve for all welded steels and one for aluminium alloys.

This technique has simple meshing as no weld elements are present, and that the 

weld stress connection reduces sensitivity to weld element size. Unfortunately this 

technique is very similar to the LMS FALANCS and is a type o f  weld classification 

approach, which in turn complicates the method. Fatigue analysis preparation can be 

potentially very time consuming.

Any o f  these five methods are valid for FE modelling and subsequent analysis of 

fatigue critical locations in components. For this project however the current focus 

will be on the comparison of Volvo MSC.Fatigue and the Ford FLOW' methods for 

analysing welding fatigue of  simple geometry coupons and components.
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7. MEASURING STRESS & STRAIN BY EXPERIM ENTAL METHODS

Alternative methods for determining stresses and strains in FE are through strain 

gauging and photoelasticity.

7.1 Strain Gauge

Strain (s) is the amount o f  deformation of  a body due to an applied force and is 

defined as the fractional change in length from L to L+AL. The ratio AL/L is called 

strain and is shown in Eq.10.

£ = —  Eq.10
I

As the ratio of deformation is often very small, it is often represented in units of 

pstrain or 10‘6. The most common method o f  measuring strain is with a strain gauge, 

a device whose electrical resistance varies in proportion to the amount of strain in the 

device. The metallic strain gauge consists o f  a very fine wire or a metallic foil 

arranged in a grid pattern. The grid pattern maximises the amount o f  metallic wire or 

foil subject to strain in the parallel direction shown in figure 7.1. The cross sectional 

area o f  the grid is minimized to reduce the effect of shear strain and Poisson strain. 

The grid is bonded to a thin backing, which is attached directly to the test coupon. 

Therefore, the strain experienced by the test coupon is transferred directly to the 

strain gauge, which responds with a linear change in electrical resistance.
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Figure 7.1: A Strain Gauge

The gauge factor of a strain gauge relates strain to change in electrical resistance. 

The gauge factor (GF) is defined as the ratio o f  fractional change in electrical 

resistance to the change in strain, which is shown in equation 1 1.

G F = * * l *  Eq.ll
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Where R is the resistance of the undeformed gauge, AR is the change in resistance 

caused by strain, and e is strain. (Wikipedia 2006)

7.2 Photoelasticity

Photoelasticity is a whole-field technique for measuring and visualising stresses and 

strains in structures. The method involves applying a given stress state to a model 

and utilising the induced birefringence o f the material to examine the stress 

distribution within the model. In response to an applied stress a substance may 

change its dielectric constant and consequently, in transparent materials, change its 

refractive index. The optical anisotropy is known as either photoelasticity or the 

piezo-optical effect. The magnitude and direction of stresses at any point can be 

determined by examination o f the fringe pattern, and related to the studied structure.

Birefringence is the ability of the material to split incident light into two component 

rays. This property only exists when the material is being stressed. The direction and 

speed of the propagating light are always coincident with and proportional to the 

direction and magnitude of the principal stresses, respectively.

It is a technique, consisting o f a number of polarising plates surrounding a model. A 

polarizer is a collection of parallel slits only emitting light components in the 

direction of the slits. The emerging light is termed polarised light. This polarised 

light is then incident on the object being analysed either reflecting or transmitting 

through the material, depending on the opacity o f the material. The light out o f phase 

as it emerges from the material, passes through an analyser, where only the 

components parallel to the axis of the analyser are transmitted, and creates 

interference patterns. The amount of interference is proportional to the phase 

difference o f the propagating light and is therefore directly proportional to both the 

difference in principal stresses and the maximum shear stress.

The interference patterns, which appear as colourful fringes unique to a specific 

stress distribution provide an immediate representation of the shear stress distribution 

throughout the model.
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The layout of the Grey Field Polariscope (GFP) is shown in figure 7.2a and consists 

o f  a projector unit delivering circularly polarised light and a CCD camera with a 

constantly rotating analyser. For each revolution of the analyser a number o f  images 

are captured which allow the intensity o f  the reflected light to be measured. The 

returning polarised light if  there is a stress causing birefringence present is elliptical, 

and from this intensity data it is possible to calculate the axes o f  the ellipse and its 

angle o f  retardation. From this the captured image can be expressed as defined by a 

Mohr's circle solution representing the shear stresses in vertical and horizontal planes 

together with the maximum shear stress.

Circular

The fringe pattern is based on a contrast between the colours blue and red as shown 

in figure 7.2b. Areas that are blue represent areas in compression, and areas that are 

red represent tension. The variation o f  intensity and shades o f  the two primary 

colours represents the difference and strength o f  the stress magnitude.

Video
C a m e ra //Z_

Computer

P ro jec to r

Stourc ■

Figure 7.2: a) GFP 1200 Polariscope Setup Diagram, b) M i l  A Maximum Shear 

Stress Distribution

The GFP allows for photoelasticity o f  opaque, non-birefringent objects through use 

o f  a thin, birefringent epoxy coating applied to the outer surface o f  the model. The 

coating thickness does not need to be completely uniform, as the GFP automatically 

measures and accounts for slight thickness variation. The object itself must have a 

reflective covering, so that the light can be reflected through the epoxy coating. The 

strain distribution on the surface o f  the model is then transmitted to the coating, 

which in turn is the strain distribution pattern that is visible during analysis. This 

strain distribution is directly proportional to the stress distribution, so an immediate 

qualitative stress analysis is available. A quantitative stress analysis is available 

through the use o f  Hooke’s relations o f  principal stresses and strains. In order to
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make this conversion, the Young’s Modulus and Poisson’s Ratio for the specific 

bireffingent material must be known. (Higdon, Ohlsen et al. 1985; Boyce, Calvert et 

al. 2003)
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8. SUMMARY OF LITERATURE REVIEW

Fatigue has been a much-researched phenomenon for nearly 200 years and will 

remain an area of extreme importance for many industries, especially in the 

automotive industry. Testing methods are extensive and varied, and the best methods 

for analysis will depend on the type and application of the final component. Most of 

the research to date has been dealing with constant amplitude testing o f simple 

components.

The automotive industry designs and manufactures numerous complex components, 

many o f which are welded. They experience complex fatigue loading conditions in 

service. These conditions are hard to reproduce in laboratories and, therefore, there is 

a lack of confidence in the current predictive methods for fatigue analysis.

With the automotive industry under significant legislative pressure to reduce weight 

and improve vehicle emissions, lighter materials by substituting conventional mild 

steels with thinner high strength steels , which have improved fatigue properties, are 

now being investigated. Fatigue properties of high strength steels can influence the 

level of weight reduction achievable and are related to the steels UTS. These 

properties are also affected when notches are introduced and the extent to which 

performance is affected by the notch depends on its severity. Welds, which act as 

severe notches and other joining mechanisms drastically reduce the fatigue strength. 

Welds mainly change the microstructure and by doing so remove the benefit o f the 

high strength of the parent material.

Moreover, many studies have shown that, gauge for gauge, welded high strength 

steels do not have improved fatigue performance over welded conventional mild 

steels.

Therefore the effects o f welding fatigue are very important for the durability 

assessment o f components. The automotive industry is currently in the process of 

reducing the number of prototype vehicles produced and tested which is exerting 

pressure on the analysis community to more accurately predict potential fatigue areas 

during the design and development phases. With less time available for building and

6 6
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testing prototypes before manufacturing, it has become vital to simulate structures on 

computers and accurately predict potential functional issues.

On this basis, the fatigue properties o f seam welded high strength sheet steel will be 

investigated. Work will be carried out on a variety of test specimens, ranging from 

simple geometry seam welded lap-shear and tension-peel coupon specimens through 

to full scale automotive components. A variety o f loading regimes will be used to test 

the specimens including simple constant amplitude sinusoidal signals of varying 

loads and ratios to variable amplitude signals.

Two weld fatigue CAE techniques, proposed by Volvo and Battelle are being 

incorporated into MSC.Fatigue, FLOW and FE-Safe Verity finite element fatigue 

analysis software packages, and will therefore be reviewed in this project. These 

CAE techniques will form the analysis for both the coupon tests to produce S-N 

curves and the subsequent life predictions of the automotive component.

Experimental verification of the FE models in the form of strain gauges and 

photoelasticity will be employed to compare the stress distribution away from the 

weld. Using these techniques will also allow confidence to be gained in the method 

o f FE modelling the coupon joints.
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9. PROJECT OBJECTIVE OVERVIEW

This research project aims to develop the ability of using CAE methodology for the 

durability assessment o f welded steel automotive components to reduce the amount 

o f physical testing required for verification purposes.

9.1 Objectives

More specifically, the objectives of this project include:

• Review CAE seam weld durability assessment techniques

• Generate seam-weld fatigue data (coupon joints)

• Conduct component and coupon durability tests

• Perform FE stress and fatigue analyses

• Correlate physical tests with FE modelling

• Propose new or improved techniques

9.2 Project Scope

Figure 9.1 shows how the objectives o f this project were achieved through three 

main areas o f activities:

Data generation involved using the different coupon geometries under constant and 

variable amplitude, and a block loading sequence of constant amplitude loading. This 

data was analysed from load-life curves to "structural stress vs. life" curves.

For the CAE durability assessments o f the front upper control arm, the generated 

structural stress-life curves were used. These S-N curves were generated from the 

coupon data analysis, and used as the material curves for the analysis. From this 

predicted lives for the front upper control arm were obtained.

Component Rig-Tests will generate the actual lives of the Front Upper Control Arm 

(FUCA) under constant amplitude, block loading and variable amplitude loading 

conditions. These lives will be used to check the CAE predicted lives.

6 8
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Com ponent Rig-Tests

Measured 
Weld Lives

Data Generation (Coupon Tests)
Comparisons

weld 
fatigue 
_ data

Predicted 
Weld Lives

CAE Durability Assessments

• Prediction Quality
• Best Technique
• New Technique

Figure 9.1: Outline o f  Project Scope
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10. EXPERIMENTAL AND ANALYTICAL PROCEDURES

The test programme objectives are as follows:

1. Data generation for input into fatigue analysis

2. Component test comparison with fatigue life predictions

The coupons were designed based on the Jaguar & Land Rover previous fatigue 

work on CAE weld based fatigue life predictions. Most chassis or suspension 

components were either made at GKN Autostructures or TKA-Tallent. It was 

deemed appropriate for both suppliers to prepare the coupon joints, so as to ensure 

consistency in the welding conditions between coupon joints and the welded FUCA 

components. The welding conditions were not supplied but assurances were given 

that the coupons met the same welding standard as the welded components.

The FUCA component was chosen on the recommendation o f Jaguar & Land Rover. 

It was deemed a fatigue critical component during vehicle development as fatigue 

cracks had been identified on this component during the development stage. Some 

investigations were completed and potential issues discussed, the FUCA component 

was deemed a suitable component for more detailed investigations.

10.1 Material Selection and Composition

The coupon specimens are made of a typical high strength low alloyed (HSLA) 

automotive grade steel -  Corns XF350 (S355MC EN 10149-2:1996). It is a hot 

rolled, micro alloyed steel strengthened through the process of precipitation 

hardening and grain refinement. The composition o f the steel, and typical mechanical 

properties are shown in Table 10.1.

Table 10.1: XF350 Steel Composition and Mechanical Properties
Chemical Composition Tensile Properties

Grade C Mn Si P S Al Nb Yield strength 
MPa

Tensile strength 
MPa

% El.

XF350 <0.1 <1.2 <0.04 <0.025 <0.01 <0.02 <0.3 >350 >430 >23
XF350 (2-3mm thick) Typical 393 469 27

Coupon 0.082 0.414 0.019 0.0147 0.0062 0.049 0.019
FUCA 0.104 0.515 0.027 0.0332 0.0054 0.045 0.0261

Values o f composition are in weight percentages

The chemical compositions of both the FUCA component and the coupons were 

checked and found to be consistent with that of XF350 grade of steel, also shown in
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the table 10.1. The composition o f  both the coupons and the FUCA is well within the 

bounds of XF350, and therefore the same material.

For component testing, a right hand side Front Upper Control Arm (FUCA) from 

Land Rover Discovery 3 was selected as shown in figure 10.1. It is made of  3mm 

XF350 steel with MIG welds, and supplied with bushes and ball joints fitted.

Figure 10.1: Front Upper Control Arm (FUCA)

The typical microstructure for a HSLA grade of  steel used for both coupon suppliers 

and the FUCA component is shown below in figures 10.2 -  10.4. The typical parent 

material microstructure is a mixture o f  ferrite and pearlite phases, whilst the weld 

material shows typical columnar grains with large ferrite grains produced from the 

welding consumable.

At the diffusion line the columnar grains o f  the weld material change into a coarse 

grained HAZ. 1mm from the diffusion line the HAZ has a much finer grained 

structure.
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Figure 10.2: Typical Micrographs for GKN Coupons, a) Parent Material, b) Weld 

Material, c) Diffusion Line and HAZ, d) HAZ Distance 1mm from Diffusion Line, e) 

Illustration o f  Weld Micrograph Positions
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Figure 10.3: Typical Micrographs for TKA Coupons, a) Parent Material, b) Weld 

Material, c) Diffusion Line and HAZ, d) HAZ Distance 1mm from Diffusion Line, e) 

Illustration of Weld Micrograph Positions
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Figure 10.4: Typical Micrographs for FUCA Components, a) Parent Material, b) 

Weld Material, c) Diffusion Line and HAZ, d) HAZ Distance 1mm from Diffusion 

Line, e) Illustration of Weld Micrograph Positions

From examining the FUCA component microstructure at lower magnifications, the 

appearance of weld porosity defects near the edge of  the weld material were noted 

and shown in figure 10.5a, and b shows the location of the porosity in the weld.

Porosity

Figure 10.5: a) Weld Porosity in the FUCA Components, b) Location of Porosity

10.2 Coupon Testing for Data Generation

10.2.1 Coupon Joint Configurations

Two suppliers o f  Land Rover - GKN and TKA-Tallent provided simple geometry 

specimens to generate data for input into subsequent fatigue analysis. Figures 10.6 

10.9 show the 4 different geometries, each with either a full stitch weld or partial 

weld.
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38 M2

Figure 10.6: Ml and M2 Lap-Shear Geometry

I 12

W elds

M11A 38 M11B

Figure 10.7: Ml l Short and Full Double Lap-Shear Geometry
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t

* M3 I  M4

Figure 10.8: M3 and M4 Peel Geometries

* M6 Lateral loading

M8 bending

M5 axial loading

1X5

Figure 10.9: M5, M6, M8 T-Shaped Geometry with 3 Different Loading Directions 

10.2.2 Test Machines and Rig

To compare basic weld fatigue properties, constant amplitude stress-life tests were 

carried out using a servo-hydraulic Dartec fatigue machine fitted with a 25kN 

50kN actuator load cell, MTS 647 Hydraulic wedge grips and a Dartec controller, as 

shown in figure 10.10a.

The test setup for the T-shaped joints is a servo-hydraulic test arrangement consisting 

of an MTS 458 controller and a lOkN actuator mounted on a bedplate as shown in 

figure 10.10b. Data collection uses a high cycle fatigue rig controlled by Land Rover 

in-house software.
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Figure 10.10: a) Coupon Test Machine, b) T-shaped Coupon Rig 

10.2.3 Fatigue Loads

10.2.3.1 Constant Amplitude Loading

For all the coupon geometries shown in figures 10.6 -  10.9 were tested at an R-ratio 

R=0.1.

From the remaining coupon specimens the geometries with enough specimens for a 

valid test were used to conduct further investigations into changing R-values. 

TM1 IB was selected for testing at R-ratios of R=0.5 and R=-l. GM2 was selected 

for testing at R=0.5.

10.2.3.2 Variable Amplitude Loading

Two methods of variable amplitude loading was considered 1) 2-level block loading, 

2) Random loading using the SAE Bracket Load-Time history.

2-Level Block Loading

A block-loading load time history programme was created to enable an easier 

method o f  evaluation of the cumulative damage rule for welds, such as Miner’s Rule. 

Two load levels which cycled around the mean were chosen for the programme, 

under R=0.1 conditions as shown in figure 10.1 1 (20kN and lOkN) and figure 10.12 

(15kN and 7.5kN).
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Figure 10.11: P l Load Level Sequence
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Figure 10.12: 2nd Load Level Sequence

Double-weld line lap-shear coupon GM11A was selected for the block loading 

sequence due to having enough specimens available for testing, and was tested using 

the same servo-hydraulic Dartec machine used for constant amplitude testing.

1 0 0  c y c le s

9 0 0  c y c le s

Cycles, Nf
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" Random " SAE Bracket Loading

The SAE Bracket load-time history was chosen on the recommendation o f  Jaguar & 

Land Rover. This load-time history is a “random” variable amplitude loading which 

is relevant for chassis components.

Variable amplitude loading followed constant amplitude testing. Double lap-shear, 

single lap-shear, and T-Shaped coupons geometries were selected: TM11A, GM1 

and GM8.

SAE Bracket Load-Time history was used and scaled so that the peak load levels of 

the history corresponded to the levels used during the constant amplitude tests as 

shown in figure 10.13. The test was controlled using a Jaguar and Land Rover in- 

house variable-amplitude fatigue test control software program, which scales the load 

levels using volts.

Load levels 
from CA 
testing

Figure 10.13: SAE Bracket L o a d -T im e  History

Rainflow cycle counting was performed using the MSC.Patran software MSLF tool 

with a counting bin number o f  128. The results from analysing the SAE Bracket 

load-time history are shown in figures 10.14 -  10.16. Figure 10.14 shows the number 

o f  cycles in the load-time history for the given load range of 18kN to OkN and shows 

that the majority o f  the cycles are not at the peak load level.

Figure 10.15 show the number of cycles either side of the mean, whilst figure 10.16 

shows the effect of the number of cycles for the range. The rainflow counting, mean 

and range effect on number of cycles remains the same for the other load levels used

lO O O r

- 1 0 0 0 _____________I____________ I____________ 1____________I____________ I____________ 1_______

0 < } 6595.55
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for TM11A, GM1 and GM8 with just the axis scaling changing. Therefore these 

graphs are not shown.

C Y C L E  H I S T O G R A M  D I S T R I B U T I O N  F O R  : TM 1 1 A _ R A N G E  1 3 K

M a x i m u m  h e i g h t  : 1 2  Z. U n i t s  :

1 2

C y c le s  
Z-A x i s

1 S

Mean
kNRange

kN
X-Axis 3 .5 3 7 2 E -61 8 .1 8

Axis

Figure 10.14: Number of Cycles for a given Load Range and Mean

S u m m a t i o n  o f  Y - a x i s  fo r  H i s t o r y  : T M 1  1 A  R A N G E  1 8 K N

21 U n i t s  :

Mean kN

Figure 10.15: Number o f  Cycles for the Y-Axis of the SAE Bracket Load-Time 

History
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Summation of X—axis for H istory : TM1 1 A_RANGE_1 8KN 

Z Un its :

®0
>0

Range kN

Figure 10.16: Number o f  Cycles for the X-Axis of the SAE Bracket Load-Time 

History

10.2.4 Test Procedure

For all the coupon testing completed, the testing conditions are detailed in Table 

A 10.2.1 in Appendix 1.

10.2.4.1 Constant Amplitude Fatigue Tests

The Dartec or MTS 458 controller allows all the parameters such as load levels, 

waveform, frequency, and test limits required in the test to be controlled. For all R 

ratios, the uniaxial tests were carried out on the selected geometries with a frequency 

of  5 -  15Hz. Tests were performed over a range of applied constant amplitude loads 

to target fatigue lives o f  104- 10° cycles. The data generated from the machine is then 

collected by a Land Rover in-house high cycle fatigue test control program, which 

records the load, displacement, and number of load reversals (which is double the 

number of cycles).

For the lap-shear and peel geometries (figures 10.6 -  10.8), loading was applied by 

means o f  a servo-hydraulic Dartec fatigue machine fitted with a 50kN actuator load 

cell, MTS 647 Hydraulic wedge grips and a Dartec controller. Spacer plates were 

fitted to ensure true alignment o f  the coupon in an attempt to avoid loading 

misalignment. For the T-Shaped geometry (figure 10.9), loading was applied using a 

servo-hydraulic test system consisting of a MTS 458 controller and a lOkN actuator 

mounted on a bedplate as shown in figure 10.10b.
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Tests were then performed over a range of constant amplitude loads to gain data 

points with lives of 104-106 cycles.

1. Applied load range from 8 -  20kN for lap-shear geometries

2. Applied load range from 0.5 -  1.2kN for peel geometries

3. Applied load range from 2 -  36kN for T-shaped geometries

The termination criterion for the tests is the coupon breaking from complete crack 

propagation through the weld. The life to failure is then recorded. From this the 10% 

stiffness drop was calculated from the recorded load and displacement data.

Stiffness = Load range / Displacement range

Tests were deemed a runout if  they achieved 2,000,000 cycles without reaching the 

termination criterion.

10.3 Component Testing

The front upper control arm (FUCA) supplied by TKA-Tallent formed the basis of 

the component testing.

The uniaxial test rig is a servo-hydraulic test system consisting of an MTS 458 

controller and a 25kN actuator mounted on a bedplate, as shown in figure 10.17a. 

The location of the FUCA in the car suspension is shown in figure 10.17b. The 

actuator loads the component to represent the vertical loads (in the vehicle Z- 

direction) experienced in service. The load is applied through the anti roll bar (stabi) 

link through the stabiliser mount.

The FUCA component has all the joints tightened to the required torque levels -  ball 

joint 60Nm, Stabi link 98Nm and chassis/wishbone 149Nm. A close-up of how the 

load is applied to the FUCA is shown in figure 10.18.
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Figure 10.17: Uniaxial Z-axis Rig with a FUCA Component on Test, b: Location of 

FUCA in the Car Subframe

FUCA

Test
component
FUCA

Anti Roll 
Bar link 
(load 
applied)

Figure 10.18: Load Applied through the Anti Roll Bar Link

To gain a thorough comparison with the initial tests carried out by the TKA Tallent, 

the rig setup had to replicate, as far as possible, the one used at Tallent. Nevertheless, 

slight alterations to the Tallent setup were made for ease o f  keeping the FUCA 

component straight and applying the load into the stabiliser link hole at a 9° angle 

from an axis 'Normal' to the anti roll bar link hole instead of having the component at 

a 9° angle.

10.3.1 Test Procedure

It is important to ensure that required torque levels are applied to the Fitted 

component. The MTS 458 controller allows all the parameters such as load, 

waveform, frequency, cycle counter, and test limits required in the test to be 

controlled.
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Crack initiation is monitored by visual inspection. A crack size of approximately 

10mm, the smallest size crack visible by eye from the rig setup was the defined as 

the crack initiation point. The termination criterion for component failure was 

defined as a crack size of between 40 -  50mm for which a life to failure is recorded.

10.3.1.1 Constant Amplitude Fatigue Tests

Uniaxial tests were carried out on the FUCA under R = -1 conditions. Tests were 

performed over a range of applied constant amplitude loads from 2 -  7kN to gain 

data points with lives o f  104-106 cycles. The weld o f  the component under test is 

shown in figure 10.19 with the notch and possible crack propagation path being 

indicated.

Tack propagates 
fdown this weld*Notch

Figure 10.19: Location of Crack Initiation on the FUCA Component

10.3.1.2 Variable Amplitude Fatigue Tests -  Block Loading

A block load-time history programme was created based on the loads used during 

constant amplitude testing, which are shown in figures 10.20 and 10.21. The 

sequence was created as one block and then repeated until failure of the component. 

Each block was counted as one repeat. Block loading signal 1 (figure 10.20) shows 

load levels of 7kN and 3.5kN were chosen and cycled around the mean under R=-l 

conditions. Block loading signal 2 (figure 10.21) shows load levels of 4kN and 2kN 

were chosen and cycled around the mean under R=-l conditions.
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Cycles, Nf

Figure 10.20: R=-l Block Loading Signal for the 1st Load Level
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Figure 10.22 shows the block loading sequence use for a single test using a different 

loading condition o f  R=0.1 using similar load levels o f  7kN and 3.5kN. This test will 

determine if there is an effect o f  mean stress on the fatigue lives o f  weld components, 

which currently most welding and design engineers are advised not to consider.

1 0 0  c y c l e s

^ .

9 0 0  c y c l e s

Cycles, Nf

10.21: R=-l Block Loading Signal for the 2nd Load Level
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1 0 0  c y le s

9 0 0  c y c l e s

6 0  8 0  

Cycles, Nf

120

Figure 10.22: R=0.1 Block Loading Signal

10.3.1.3 Variable Amplitude Fatigue Tests -  SAE Bracket Load-Time 

History

Variable amplitude loading followed constant amplitude testing. Initially an internal 

Land Rover test load-time history, known as the Handling and Cornering course, was 

used but this failed to crack the FUCA during a reasonable period o f  time and scaling 

the handling course did not reduce the testing period so an alternative programme 

was used.

SAE Bracket Load -  Time history was used instead and scaled so that the maximum 

peak of the history ranged between ±7kN as shown in figure 10.23.

1000

1000

Scaled to 
±7kN

6 5 9 5 .5 5

Figure 10.23: SAE Bracket Load -  Time History
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Rainflow cycle counting was again conducted using MSC.Patran software with the 

counting using a bin number o f  128. The results from analysing the SAE Bracket 

load-time history are shown in figures 10.24 -  10.26. Figure 10.24 shows the number 

o f  cycles in the load-time history for the given load range of 7kN to -7kN and shows 

that the majority of the cycles are not at the peak load level. Figure 10.25 show the 

number of cycles either side of the mean, whilst figure 10.26 shows the effect o f  the 

number of cycles for the range.

C Y C L E  H I S T O G R A M  D I S T R I B U T I O N  F O R  : S A E B R A K T  J E N N Y

M a x i m u m  h e i g h t  : 12  2  U n i t s  :

12

Mean
kN
Y-Axis

Range
kN

X-Axis
- 7 0 0 01 . 4  1 4 E 4

Figure 10.24: Number of Cycles for a given Load Range and Mean

Summation of Y-axis for History SAEBRAKT_JENNY 

Z Units :

Mean kN

Figure 10.25: Number of Cycles for the Y-Axis of the SAE Bracket Load-Time 

History
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Summation of X-axis for History : SAEBRAKT_JENNV 

Z Units :

Range kN

Figure 10.26: Number of Cycles for the X-Axis of the SAE Bracket Load-Time 

History

All FUCA component-testing conditions are detailed in Table A 10.3.1 in Appendix 

1.

10.4 Fracture Surface and M icrostructural Examination

10.4.1 Scanning Electron Microscopy (SEM)

For both the coupons and the FUCA components fracture surface analysis, scanning 

electron microscopy (SEM) was conducted using a Philips XL 40 Microscope. This 

was used to investigate the crack initiation sites on the specimen fracture surfaces.

10.4.2 Optical Microscopy

In order to obtain an overview o f the weld fracture surface for both the coupons and 

the FUCA components, an Olympus Photo/Binocular Microscope with a JVC TK- 

C 1381 EG model Colour Video Camera was used. The image software used to obtain 

the microscope image was Aquinto Software A4i Docu.

10.4.3 Optical Microscopy for M icrostructural Analysis

Traditional metallographic preparation techniques were used to prepare the 

specimens for the microscopic investigation. Weld Specimens were sectioned 

longitudinally through the weld and parent material and subsequently mounted in 

Bakelite resin, ground, polished and then etched in 2% Nital. To reveal the
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microstructure, an etching time of 30 seconds was used. Images were obtained using 

a Nikon Epiphot 200 Microscope with a 3CCD digital camera model JVC KYF75U. 

The image software used to obtain the microscope image was Adobe Photoshop 

Limited Edition.

10.5 Stress Measurements of Coupon Specimens for FE Comparison

Photoelastic coating was applied to the three different geometry seam weld tensile 

specimens in order to obtain a stress/strain distribution over the front face of each 

specimen. Particular interest was focused on the weld root and its effect on the strain 

distribution and intensity.

10.5.1 Strain Gauging Test Procedure

Strain gauges used were the type CEA-06-125UW-350, from Micro-Measurements. 

Strain gauges were applied to the front and rear faces on each of the three coupons as 

shown in figure 10.27, using the standard Micro-Measurements cement M-Bond 200 

with a room temperature cure.

Initial testing was carried out with just two strain gauges per coupon face. Loading 

was applied by means of servo-hydraulic Dartec fatigue machine fitted with a 50kN 

load cell, MTS 647 Hydraulic wedge grips and a Dartec controller. Spacer plates 

were fitted, to ensure true alignment of the coupon in the grips, and in an attempt to 

avoid loading misalignment stresses.

Strain gauges were zeroed with the coupon fixed in the top grip only and when it was 

hydraulically clamped in the lower grip further gauge reading were taken. The 

gauges were then re-zeroed and incremental loading applied at lkN  intervals up to a 

maximum of 7kN with strain gauge results recorded at each increment. This was 

repeated 3 times for each coupon then final strain gauge readings were recorded after 

the specimen was released from the grips.
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b)a)

Figure 10.27: a) Front Face, b) Rear Face

There were 3 types o f  specimen geometry as shown below in figure 10.28 they are:

1) M 1 -  Single partial weld, 2) M2 -  Single full weld and 3) M 11A -  Double partial 

weld.

ta-i

Figure 10.28: Coupons used in both Strain Gauging and Photoelasticity 

10.5.2 Photoelasticity Test Procedure

The coupons were firstly sprayed with a reflective silver paint (Krylon Dull 

Aluminium) and then coated with a 0.5mm layer of epoxy resin (Devcon 2Ton), to 

provide the photo-reflective coating. Loading was applied by means o f  an servo- 

hydraulic Dartec fatigue machine. The grips used were standard wedge grips and
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spacer plates were fitted in an attempt to avoid loading misalignment stresses and 

keep the coupon straight.

Strain gauges were attached as shown in figure 10.27 on the coupons shown in figure 

10.28 so that absolute values o f stress could be calculated at those points. Readings 

from the strain gauges and the photoelastic coating were taken after assembly to 

record stresses due to possible misalignment. The gauges were zeroed to enable 

stresses only due to loading to be recorded. The photoelastic results were recorded 

and subsequently subtracted from the incremental loading results for the same 

reason.

Results from both strain gauges and photoelastic coatings were taken at lkN  loading 

increments up to 7.0kN and repeated 3 times to allow for any “settling” of the 

loading fixtures. The Stress Photonics GFP1200 automated polariscope was used to 

obtain the photoelastic fringe patterns. This polariscope has the ability of measuring 

fractions o f a fringe order, which enables the use of thin photoelastic coatings to 

avoid stiffening the specimen.

The photoelastic results were analysed using the GFP 1200’s DeltaVision software 

and line plots were taken down the centre line onto the weld and 10mm either side o f 

the centre line. This was carried out to highlight the stress concentration factor 

generated by the weld and also to clearly demonstrate the uneven distribution due to 

the weld and specimen geometry, plus any misalignment effects due to the testing 

machine.

10.6 FE Modelling

In the current EngD study, welded coupon joints and the FUCA component were 

modelled using the FE-package MSC.Nastran version 2005.1. The FE models of the 

coupon joints were created using the FE pre-processor package MSC.Patran Version 

2005r2 on a PC workstation. The geometry was modelled as a 2-dimensional (2D) 

surface, i.e. shell elements in the finite element (FE) analysis.

An FE mesh was produced to represent the sheet metal by using four-noded 

quadrilateral shell (Quad4) elements with an element size of approximately 3mm.
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Material properties of the steel coupons used in the FE models include a Young's 

Modulus o f  200,000MPa, and a Poisson's ratio of 0.3. Thickness of the steel was 

measured using vernier callipers.

Load and boundary conditions simulate the fatigue loading and fixing o f  the 

specimens in the fatigue-testing machine. There are 6 degrees of freedom in the 

model, 3 degrees of freedom for translation and 3 degrees o f  rotation. For the fixed 

end of the coupon model, all 6 degrees o f  freedom were fixed i.e. fully constrained. 

At the loading end it was constrained in all the rotations, and x, and z translations, 

while the translation in y or longitudinal direction was left free to apply the load. A 

unit load of lkN was applied to all models. The servo-hydraulic test machine applied 

the load by imposing a displacement. This is simulated in MSC.Nastran by using a 

multi-point constraint RBE2 or rigid beam elements, which simulate the applied load 

as shown in figure 10.29. The RBE2 element ensured that all nodes along the loading 

end (the dependent or slave nodes) have the same displacement as the centre node 

(independent or master node), to which the unit load was applied.

Figure 10.29: Applied Load and Boundary Conditions

All MSC.Nastran FE analyses of the coupons were linear elastic.

Volvo Method Weld Representation

Welds were represented by thick four-noded shell elements, whose thickness was 

derived by adding together the thickness o f  the two plates of sheet metal. The weld 

single shell elements are inclined at an angle of approximately 45° to the base steel
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sheet, as shown in figure 10.30a. Figure 10.30b illustrates the weld and weld toes, 

used in modelling the coupon joints.

Stress at weld 
toes = failure 
locations

a)
Figure 10.30: Weld Representation a) Diagram (MSC, 1999) b) Weld FE Model 

The Battelle Method of Weld Representation

Welds were represented by thick four-noded shell elements, whose thickness was 

derived by adding together the thickness of the two plates o f  sheet metal. The weld 

shell elements are inclined at an angle o f  approximately 45° to the base steel sheet. 

The inclined weld shell elements are joined to the two plates at the weld toe with a 

back-panel to form a triangular weld. The weld element nodal positions coincide 

with those o f  the weld toes as shown in figure 10.31.

Back Panel

Figure 10.31: Weld Representation

10.6.1 FE Modelling of Coupon used in Photoelasticity

FE Stress analysis was carried out by using MSC.Nastran, and the results were 

imported back into MSC.Patran, from which stress contour maps were produced and 

the stresses used to compare with the photoelastic results. Figure 10.32 show the 

undeformed basic model o f  the coupons used in the photoelasticity and strain 

gauging.
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Figure 10.32: FE Models o f  M 1, M2 and M il  A

10,6.2 FE Modelling of Coupons for S tructural Stress Calculations

Coupon joints were modelled in the CAE packages to establish the o s/F ratio. All the 

coupon models were carried out on PC workstations using several different software 

packages as summarised below:

• Stress Analysis using MSC.Nastran Version 2005.1, Vendure FLOW, FE- 

Safe

• Fatigue Analysis using MSC.Fatigue within Patran 2005r2, FE-Safe 

Verity version, Vendure FLOW

• Post Processing occurred in MSC.Patran, HyperView Version 7.0

Each tested coupon was measured to get all accurate dimensions for modelling using 

vernier callipers and a travelling microscope to get the weld dimensions.

FE Stress analysis was performed by MSC.Nastran and the results were imported 

back into MSC.Patran from which stress contour maps were produced. The 

MSC.Fatigue module inside MSC.Patran was used to calculate the fatigue damage 

and lives at the weld toe, from which fatigue damage on life contour maps was 

produced.
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7777777 -

Basic FE models

Figures 10.33 -  10.34 show the undeformed basic model o f  the TKA-Tallent and 

GKN coupons for both the Volvo and Battelle Structural Stress calculations 

respectively and used in the analysis o f  the constant amplitude test work.

a)

GM2

b)

Figure 10.33: The Undeformed Models for Volvo Structural Stress Calculations a) 

TKA-Tallent Coupons, b) GKN Coupons Predicted
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GMI  IB

Figure 10.34: The Undeformed Models for Battelle Structural Stress Calculations a) 

TKA-Tallent Coupons b) GKN Coupons

10.6.3 FE Modelling of FUCA Component

The basic component model was constructed at Corus using CATIA to modify the 

original CAD model o f  the FUCA component, which came from TKA-Tallent. This 

model was orientated in the car line as shown in figure 10.35a. The “car-line” is a 

standard reference co-ordinate system for car structures, which is used by automotive 

manufacturers. The model, required re-orientation into the rig set up as on the 

bedplates as shown in figure 10.35b.
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Figure 10.35: a) Car Line Description, b) FUCA Rig Set Up

To create the actuator bar and the ball joint support as shown in Figure 10.35b, beam 

elements were used with the pin connections controlling the 6 degrees o f  freedom. 

The FUCA FE model includes two solid elements, which are the ball joint and the 

anti roll bar link ball joint. Rigid beam elements or RBE3 elements were used in the 

bushes and both the FUCA ball joint and the anti roll bar ball joint. RBE3 elements 

have no stiffness but average all the displacements o f  the nodes connected to it to the 

centre node. Bush modelling involved using coincident nodes with 6 degrees of 

freedom, shell elements to represent the bush outer structure and the non-linear bush 

rates from TKA-Tallent.

The FE mesh was created on the mid-surface o f  the sheet metal. The elements used 

were mainly the 4-noded quadrilateral shell (Quad4) elements with the occasional 3- 

noded triangular (Tri3) elements, with an element size o f  3mm.

The weld shell elements are inclined at an angle o f  approximately 45° to the base 

sheet, and incorporate back elements so that the weld forms a triangular shape, which 

is required for various CAE techniques.

The load and boundary conditions applied to the FUCA FE model simulate the 

fatigue loading and fixing on the rig. There are 6 degrees o f  freedom for each FE 

node in the model, 3 degrees o f  freedom for translation and 3 degrees o f  rotation. For 

the bushes the boundary conditions involve all 6 degrees o f  freedom being fully 

fixed. The anti roll bar ball joint which applies the 7kN load is fixed in the x and y 

translation and in the z rotational direction. The FUCA ball joint is fully fixed in all 3 

translational directions and also in the z rotational direction, this is shown in figure 

10.36.
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1

Figure 10.36: Load and Boundary Conditions Applied to the FUCA FE Model

The FE Modelling was earned out on PC or UNIX workstations using several 

different software packages as summarised below:

• The FUCA component was modelled in Hypermesh version 7.0

• The Bushes were analysed in both Abaqus version and Nastran version 2001

• Welds were created using CATIA and imported back to Hypermesh version 

7.0

• Stress Analysis using MSC.Nastran Version 2001

• Post Processing occurred using Hyperview version 7.0

10.6.3.1 CAE Model Verification

Modal Analysis was used to determine the resonant frequency of  the FUCA 

component. The control arm was supported in free mode using soft bungees and 

artificially excited using a hammer at point 1 in figure 10.37. An extensometer 

transducer will measure the tri-axial acceleration from the FUCA after it has been 

excited. The FUCA still had the rubber bushes in when tested. The results were 

processed using LMS Modal Software on a UNIX workstation.

Figure 10.37: Location o f  the Frequency Recorded
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The results o f  the Modal Analysis are shown in table 10.2. Mode I is associated with 

the bending and twisting o f  the bushes, Mode II is the bending o f  the arm, Mode III 

is the bending o f  the ball joint.

Table 10.2: Frequency from Modal Analysis

Modes Frequency Damping
Mode 1 517.65 Hz 5.74%
Mode 2 614.04 Hz 1.84%
Mode 3 725.58 Hz 2.74%

The damping shown in table 10.2 arises from the damping mainly in the bushes in 

Mode 1, to damping in the steel in modes 2 and 3. Figure 10.38 shows the typical 

frequency plot with the corresponding amplitude range produced at the various 

modes.

5
Mode a t  

5 :  5 H z

5

Figure 10.38: Typical Frequency Graph

This information is used to check the FUCA FE model, which will be used in finite 

element analysis.

In ensuring that the FUCA model was aligned and correct a Faro arm was used to 

measure tall parts o f  the rig to a global co-ordinate system based on the bedplates. 

This enables modification o f  the FUCA CAE model to ensure that the loading 

direction and deflection is correct.

The modal results generated were used to compare the modal testing o f  the FUCA 

FE model and to therefore ensure that the FE model responded the same way when 

excited using the FE packages.
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10.6.3.2 FUCA Weld Modelling

From the baseline model created, the welds in the model required modification for 

use in the Battelle Method i.e. the welds required a back element as shown in figure 

10.31. Figure 10.39 shows a schematic diagram of the differences between the 

triangular back panel weld and the standard Volvo weld representation.

Triangular 
back panel

Weld

Component Flange

Figure 10.39: Weld FE Representation a) Triangular Weld, b) Standard Volvo Weld 

Representation

Figure 10.40: Actual FUCA Component

Observation and measurement of the actual FUCA component as shown in figure 

10.40, indicates that there are variations in the weld starting positions. To take this 

into account, a further modification to the weld line was the removal o f  the first 

element from the weld under investigation to represent the FUCA tested components, 

which had variable weld locations. Four models were generated: Full-Length, Full- 

Length Tri shown in figure 10.41, Cut-Length and Cut-Length Tri as shown in figure 

10.42.
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Figure 10.41: Weld line a) Full-Length b) Full-Length Tri (with the back panel)

Figure 10.42: Weld line a) Cut-Length b) Cut-Length Tri (with the back panel)

10.7 M anual Calculation for the Battelle Method

The ‘Battelle Structural Stress’ approach is a method which is available as a 

commercial FE-package. However the format can be completed by manual 

calculation.

For the manual calculation a completed FE-stress analysis of the welded structure 

under analysis is required with the relevant unit load and boundary constraints 

applied which are as seen in the fatigue test conditions. The balanced nodal forces 

and moments of each element along the weld toe are then extracted from the FE 

results and used in an Excel spreadsheet, with respect to their fixed global coordinate 

system (as shown in figure 10.43a and b). Forces and moments in the global 

coordinate system for structural stress calculations must be resolved into a local 

coordinate system aligned with the weld-line to obtain the relevant line forces and 

moments.

1 0 1
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a ) Elements for Nodal Force/Moment b

Figure 10.43: a) Location o f  Elements for Nodal Force and Moment, b) 

Transforming Elemental Forces (Dong 2005)

The line force and moment vectors fy and m x are obtained by transforming the 

elemental nodal forces as shown in figure 10.42b, by using the following equations 

12 -  13. Manual calculation the line forces and moments using Excel requires the use 

of a matrix as shown in figure 10.44.(Dong 2001; Potukutchi, Agrawal et al. 2004)

,/i = y ( 2  F , - F 2) 

/ 2 = y ( 2 F 2 - f i )

m, = - { 2 M ] - M 2) Eq.12

m, = —( 2M2 -  A/,) Eq. 13

G
F2

0

0 0

0 0

Figure 10.44: Matrix Used to Generate the Structural Stress

Where:

F \, . . F„ = the element nodal force

f , -  the line force

l\, ln-\ -  the element edge length

,/i
h
h

fn

The Structural stress is then calculated by using the following equation 14.

f y 6 m ,
<7 =  <T +  (7 U =  —  + Eq. 14

Where:

fy = Line forces with respect to y’

mx = Line Moments with respect to x ’
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t -  Thickness

The Structural Stress (as), is only a surface stress and therefore other stress factors 

could influence the fatigue life. These other factors are incorporated into the 

Equivalent Structural Stress, Ss, through modifying the structural stress equation 

(Eq.14) to consider the effects of the stress concentrations (Aos), thickness (t) and 

loading mode (r), that are detrimental on the fatigue performance (as shown in

Eqs.15 -  17) (Kyuba, H and Dong, P.,2003)

ASs = ,A<T* , Eq.15
t 2m

/ ( r )  = 0.294r2 +0.846r + 24.815 Eq.16

r = i  — r Eq.17
K + O - J

Where:

Ss = Equivalent Structural Stress

t = Plate Thickness

m = Slope of the crack growth curve

I(r) = Loading Mode correction for Load-Controlled Loading

r = Loading Ratio

The Battelle process and the ability to calculate the structural stress manually is 

advantageous as its mesh insensitivity and representation of welds uses simple coarse 

elements. This method only requires the use of one S-N curve so eliminates the need 

of weld classification.

A step-by-step guide is shown in Appendix 2.

10.8 Statistical Analysis of S-N Data

Fatigue performance data for any structural material is usually shown as Stress-Life 

(S-N) data. Frequently this S-N data requires some regression analysis results 

supplied in the form of curves fitting certainties of survival, which are used in FE -  

based fatigue life predictions.
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10.8.1 Regression Analysis Based on Structural Stress

This regression is used to predict life by minimising the error in life through linear 

regression as shown in figure 10.45. The calculations for this statistical analysis 

involve using linear regression analysis: "The Least Squares Method". Fatigue 

performance data is plotted on a standard S-N graph with fatigue life on x-axis and 

Stress on y-axis. This method requires the log(life) to be the dependent variable "y" 

with the log(stress) being the independent variable. The regression data then uses 

Standard Error and the coefficients of the curve (equation of the line) for use in the 

Basquin S-N equation. Also the inverse o f the standard normal cumulative 

distribution, which has a mean of zero and a standard deviation of one, is used. 3o or 

99.87% certainty of survival is used. (Arnold 2001)

M in im isin g

lo g N f

Figure 10.45: Least Squares Method to Minimise Life Error 

10.8.2 Regression Analysis Based on Life

This regression is used to predict stress for a given life used mainly by vehicle 

designers. This is achieved by minimising the error in stress through linear regression 

as shown in figure 10.46. This method also uses the linear regression method "Least 

Squares" with log(Life) as x-variable and log(stress) as y-variable. The calculation 

uses Standard Deviation of log(Range) and R2 (which is the coefficient of 

determination and compares the estimated and actual y-values, and ranges in value 

from 0 to 1) to calculate the Standard Error. The mean and constant comes from the 

equation of the line, with the mean being used to calculate ±3 standard deviations or 

99.87% certainty of survival.
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Figure 10.46: Least Squares Method to Minimise Stress Error

10.9 Cumulative Damage Rule -  Miner’s Rule Calculation

In actual service, parts are seldom stressed repeatedly at only one stress level and, 

hence, the problem arises as to the cumulative damage effect of operations at various 

levels of stress reversal. Consequently, Miner’s rule is used. As mentioned in the 

literature review section 6.2.5, Miner’s Rule is used to calculate the fatigue damage. 

A damage fraction, D, is defined as the fraction of life used up by an event or a series 

o f events. The damage criterion for failure is assumed to be equal to 1.0.

The linear damage rule states that damage fraction, at stress level Gj, is equal to 

the cycle ratio n/Nu where nif is the number of cycles observed at the stress level and 

Nj is the number of cycles to failure at the same stress level, as shown in Eq.18

X -^ -> l Eq.18
N,

10.9.1 Variable Amplitude Fatigue Tests -  Block Loading

With the various block loading load-time histories being tested on both the coupons 

and FUCA components, the fatigue damage requires calculating. This is done 

through analysing the load-time history and calculating the percentage of life 

consumed (i.e. damage) at each loading level as shown in figure 10.47.
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Miner’s Rule: nx
2 y

.\ n=

NfN1 N2

Figure 10.47: Miner’s Rule for the 2-Level Block Fatigue Loading

The variable amplitude block-loading signal used in the tests has two load levels so

the fatigue damage is calculated at both levels. The damage at the first load level, ¥\ :

n, n7
D x = —-  and the corresponding damage for the second load level, F2 : D 2 = .

N l N  2

The total damage at failure is therefore sum of the damage at both load levels F 1 and 

n. n7
F2: D  = —-  H— —. The estimated life, n, o f the component is shown in equation 19.

N\ N  2

n = ------!-----  Eq. 19
_ « j _ +  « 2 _

N t N 2

10.9.2 Variable Amplitude Fatigue Tests -  SAE Bracket Load-Time History

The SAE Bracket load-time history as shown in figure 10.23, shows a signal with 

many different load range and mean levels. To calculate the number of cycles at each 

of these load levels would first require Rainflow Counting of the complex signal. 

This was done using the MSC.Fatigue tool MSLF within MSC.Patran. MSLF is a 

single-location fatigue analysis module. Damage accumulation was then calculated 

both manually in a spreadsheet and from this tool. Both manual and calculated 

damage constants were shown to be the same.

10.9.2.1 Calculating Damage Using Miner’s Rule

The Range, Mean and Damage data generated from the Rainflow Counting program 

are required and input in an Excel spreadsheet. This range and mean data will require 

subsequent scaling to the applied load as shown in figure 10.48.
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F — k S +  8max max
F -  = h S +  8

F = 18,000 N C oupon T est Signal

Original Signal

k =  scaling factor 
8  - offset

Sm;„ = -999

Figure 10.48: SAE Bracket Load-Time History Scaling and Offset Factors

Solving the F max and F mjn equations shown in figure 10.48 for the scaling factor, k is 

shown below in equations 2 0 - 2 1  and the offset factor, 8 is shown in equation 22.

F«*l “  = k '(5 ma< ~ ) Eq-20

k = = AF 2]
AS

S  = F  - k S  or S  = F -  kS Eq.22m ax m ax m m  m m  ^

These factors are input into a spreadsheet and used to adjust the range and the mean. 

Damage is calculated using the scaled range data and the constant amplitude loading 

data curve fitting equation. Summing up the total damage, the estimated block

repeats o f  the signal is calculated as

10.9.2.2 Calculating the Effects of Mean Stress using M iner’s Rule

When using a variable amplitude signal such as SAE Bracket, it is important to 

understand the effect that different mean stresses from the load-time history will 

have on the Damage, the damage will have to be recalculated. From the scaled and 

offset rainflow counting data o f  the load-time history, the R-Ratio is calculated from 

equation 23.
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Range 
(Mean------------)

R = ------------- —2-----  Eq.23
(Mean + Ran^ )

Sorting the data by the R-Ratio will show the proportion o f  the data which is above 

R=0.5 and therefore affected by mean stress. For all the data <0.5 (block 1) use the 

curve fitting equation for the constant amplitude data R=0.1. For all the data >0.5 

(block 2) use the curve fitting equation for the constant amplitude data R=0.5. Sum 

the damage for each block. The total damage, D is the sum of the damage from both

blocks and the estimated block repeats will be —— .
F I D

10.9.3 M iner’s Rule using Volvo Mean Stress Correction

For variable amplitude load-time histories, which have variable mean stresses, a 

correction factor for mean stress is required. To estimate variable amplitude loading 

fatigue lives (the block repeats) using the weld S-N data generated at constant 

amplitude and R=0.1, the variable signal must be converted back to the constant 

amplitude R=0.1 data. This is shown in figure 10.49.

R=0 R=().l
R=-

R=0.5

o.,(R=0) oa(R-0.5)
Mean Load

Figure 10.49: Goodman Diagram for Back Calculating the Mean Stress Values

To correct for mean stress the Goodman diagram (described in section 2.5.1.1) is 

used, from which the following equations are derived depending on whether R<0 or 

R>0.

For R>0, then the following equations 24 28 explain the mean stress correction.
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<7 n, + M j • <7 01 O n + M  2 • <7 R
<T . = (1 + M , ) — ------- 1— i=^± = (i + M ) _ ^ -----1— i=L Eq.24

1 1+ M 2 ' 1 + m 2

Rearranged to Eq.25.
®a_-o.i " * " - ^ 2  'G a_-o.i ~ & a_R + M 2 - <J a _R Eq.25

1 + R
1+ M 2 -------

a <t0,  = -----------------------------Eq-26
1+ M ,  —

9

For M 2  = 0.1, the damage calculation is shown in equations 27 -  28:

Acr01 = 0.8910891 • (1 + 0.1 ——-)A<rff Eq.27
1 — 7?

Or based on load:

AF0I =0.8910891 (1 + 0.1—-^)A FX Eq.28
1 — R

For R<0, to convert to R=0.1, then the following equations are required:

a j  = o a (1 + M, • i ± ^ )  = <7 °1 . (l + m , • i ± H )  Eq.29
1 - R  1+ M 2 1 .-0 .1

Rearranged to equation 30.

1 + 7?
1+ M X-------

( 7 ° 1 = ------------------------------  <7 Eq.30
° 1 + A/, n 11 a 4

 L-(l + - - M 2)
1 + M , 9 2

Using either o f equations 27 -  28 and 30, along with the scaled Range o f load-time 

history and its respective R-Ratio, the equivalent range can be calculated. The 

subsequent corrected damage calculation for mean stress occurs using the constant 

amplitude R=0.1 curve fitting equation. Summing up the total corrected damage,

then calculating the estimated block repeats of the signal is done using —— .
^  79

10.9.3.1 Estimating TM11A R=0.5 Load-Life Curve

The TM11A R=0.5 curve was generated from calculating the ratio between TM1 IB 

R=0.1 and TM1 IB R=0.5 curves and using this ratio to estimate the TM11A R=0.5 

curve and equation of the curve. The ratio is shown in figure 10.50 and equation 30.
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Figure 10.50: Calculating T M 11A R=0.5

AF3 ■ AF2
Eq.30

Where:-

AF] = Test load range for welded coupon TM 11B at fatigue load ratio R=0. 

AF2 = Test load range for welded coupon TM 11B at fatigue load ratio R=0.5 

AF3 = Test load range for welded coupon TM 11A at fatigue load ratio R=0.1 

AF4 = Estimated load range for welded coupon TM 11A at fatigue load ratio 

R=0.5

10.9.3.2 Calculating M2 Values

As shown in figure 10.49 M2 is the slope between R=0.1 and R=0.5 lines, therefore 

to calculate M2 both the load amplitude and the mean load for both R=0.1 and R=0.5 

is required. Equations 3 1 -  32 show how the amplitude and mean is calculated.

a  _  ° m a x  ~  ^ m i n  _  1 ~  R  ^

= "̂rnax "̂min

2

1 + /?

Eq.3

m a  a

2 Eq.32

Therefore load amplitude is shown in Eq.33 and the mean load is shown in Eq.34

c  1- R  1 - R
—  =  so a  =  o n

1+ R a 1+ R
Eq.33

=
R

1 + R
a Eq.34

Calculating M2 from Equations 33 and 34 is shown in Eq.35

G d.i c7 0.5
M 2 = —“------------------Eq.35

c7 01 G 0 5 m m

1 1 0
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10.9.4 Converting R=0.1 to R=-l

Converting the R=0.1 using the Goodman diagram in figure 10.49, this is done 

through converting both the load amplitude o f the block loading sequence from 

R=0.1 to R=-l. This conversion is shown in Eq.36 and uses the initial Volvo 

Mi=0.25, M2=0.1 values.

1 + R
\ + M 2------

o - / =_1 = (1 + M , )  ^  • <7
1 + M * Eq.36

Using the R=-l corrected amplitude values, life is then calculated using the constant

amplitude fitted curve equation.
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11. RESULTS

11.1 Determination of Test Termination Criterion

Fatigue lives to a small visible crack length are required in for automotive 

components. Unfortunately, detecting small visible cracks is incredibly difficult until 

they become a certain length. To overcome this dilemma, monitoring the change in 

load and displacement during a test will enable the coupon stiffness to be calculated. 

Using 10% stiffness drop is the common method o f determining a small crack.

When testing the coupons in the servo-hydraulic Dartec machine, load and 

displacement data were recorded to complete failure o f the coupon. This is the 

termination criterion for the test. As a fatigue crack initiates and subsequently 

propagates, the stiffness of the coupon joint reduces. By analysing the recorded load 

and displacement data, it is possible to identify the life at which the coupon stiffness 

has reduced by 10% from its original value. Incidentally, the coupon stiffness is 

defined as recommended by Ford/Volvo as Load range / Displacement range.

However, after analysing all the constant amplitude tests from both suppliers the 

final failure (FF) 1mm extension and 10% stiffness drop (SD) were found to be very 

close, showing that the test termination criterion had little effect on test results. This 

is shown in figures 11.1 and 11.2.
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Figure 11.1: GKN Fabricated Ml (GM1) Coupon Joint Final Failure and 10% 

Stiffness Drop (R=0.1)
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Figure 11.2: GKN Fabricated M3 (GM3) Coupon Joint Final Failure and 10% 

Stiffness Drop (R=0.1)

From both figures 11.1 and 11.2 little difference was found between final failure and 

10% stiffness drop regardless o f  the difference in the test coupon geometry. So the 

test termination criterion became complete failure (1mm extension) o f  the coupon
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and is a representative criterion also for "fatigue life". The results for other 

geometries can be found in Appendix 3.

11.2 Constant Amplitude Coupon Testing for Data Generation

Load-life data for various coupon joint configurations, which are shown in the 

following sections, are used to obtain the "structural stress vs. life" curves (S-N 

curves). From these S-N curves, an ideal outcome is that all the coupon fatigue life 

curves condense together to produce one "master" S-N curve regardless o f geometry 

and failure mode.

An important aspect of the current EngD study is to examine to what extent, such 

master curves exist for the welded joints investigated.

The S-N curves are used as one of the inputs for CAE weld fatigue life analysis of 

automotive chassis structures.

11.2.1 Comparison of Full and Partial Welds of Coupon Lap-shear and Peel 

Geometries Test Results

The level of load applied to the weld within a coupon depends on the coupon widths 

and, more importantly, the length o f the weld line. Therefore, a more appropriate 

weld loading parameter should be the load (force) per unit weld length as defined in 

figure 11.3.

To analyse the coupon test data, the load range is based on the actual weld length of 

each coupon as indicated in figure 11.3. Figure 11.4 describes the weld length and 

width dimensions. Figures 11.5 -  11.10 show the effect o f differences between full 

and partial welded geometries for the same manufacturer against the original test 

data.
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f  ~  Load per Unit o f  W eld  Length

Figure 11.3: Load (Force) per Unit Weld Length Definition

Figure 11.4: Diagram Showing Weld Length and Width

On the basis of total load on a coupon, figure 11.5a suggests that in the original test 

data GM2 appears to have better fatigue performance than GM1. Whilst in figure 

11.5b, the partially welded GM1 coupons have very similar fatigue performance to 

the fully welded GM2, on a per actual unit weld length basis.
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Figure 11.5: R=0.1 Load-Life Data for GM1 and GM2 Joints (Throat Failure) -  Final 

Failure a) Original, b) Normalised

As the original test data does not account for the effect of the weld on the fatigue life, 

these results will now be found in Appendix 4. The results subsequently shown will 

be the normalised results o f  per unit weld length.

With TM 1 and TM2 coupons the difference between fully and partially welded 

geometries is shown in figures 1 1.6. The test data is normalised to the weld length, 

showing that TM 1 has an increased fatigue performance over TM2.

1 1 6
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Figure 11.6: R=0.l Load-Life Data for TMl and TM2 Joints (Mostly Throat and Toe 

Failure Respectively) Final Failure

Similarly, normalised fatigue results for double lap-shear geometries G M l l A  and 

GMl  IB are presented in figure 11.7. The partially welded GM11A displays better 

fatigue lives than the fully welded GMl IB on a per actual weld length basis. 

GMl 1A survives 200,000 cycles more at 0.29 load range per unit weld length basis 

than G M 11B.
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Figure i 1.7: R=0.1 Load-Life Data for GMl 1A and GMl IB Joints (Toe Failure) -  

Final Failure

T M 11A has better fatigue performance on an actual per unit weld length basis when 

compared to the fully welded TM 11B as illustrated in figure 11.8.
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Figure 11.8: R=0.1 Load-Life Data for TM11A and TM1 IB Joints (Toe Failure) -  

Final Failure

For peel joints, GM3 and GM4 have very similar fatigue performance as shown in 

figure 11.9.

1 1 8
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Figure 11.9: R=0.1 Load-Life Data for GM3 and GM4 Joints (Throat Failure) Final 

Failure

11.2.2 T- Shaped Coupon Geometries Test Results

T-shaped coupons have been tested using all three loading types as indicated in 

figure 10.9. Figure 11.10 shows the T-shaped tensile M5, lateral M6  and bending M 8 

fatigue results. Load range levels giving lives o f  100,000 cycles and 1,000,000 cycles 

are 32.54kN and 18.85kN for GM5 respectively. GM 6  has load range levels giving 

lives o f  100,000 cycles and 1,000,000 cycles o f  3.5kN and 2.02kN respectively. On 

the other hand, for GM 8 , the load range levels giving lives o f  100,000 cycles and 

1,000,000 cycles are 3.02kN and 1.95kN respectively.

1 1 9
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Figure 11.10: R=0.1 Load-Life Data for GM5, GM 6  and GM 8  Final Failure (Throat 

Failure)

11.2.3 Effects of Mean Stress (R-Ratios)

Investigating the effects o f  mean stress on the fatigue life for GM2 and TM11B 

coupon joints by altering the R-Ratios are shown in figure 11.11 and 11.12 

respectively.

In figure 11.11, it shows that at high loads (short fatigue lives) the effect of altering 

the mean stress is less significant, whereas at high fatigue lives (low loads) mean 

stress has a greater effect. Load range levels giving life o f  50,000 cycles for GM2 

R=0.1 and R=0.5 are 13.61kN and 11.16kN respectively, a strength ratio o f  251.22:1. 

On the other hand load range levels giving life o f  4,000,000 cycles for GM2 R=0.1 

and R=0.5 are 7.23kN and 5.25kN respectively, a strength ratio o f  *1.38:1.
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Figure l l . 11: Load-Life Data for the Different R-Ratios for GM2

In figure 11.12, the effect on short fatigue lives seems to be negligible, whilst at long 

lives mean stress does have an effect. Load range levels giving life of 40,000 cycles 

for TM1 IB R=0.1 and R=0.5 are 15.33kN and 16.74kN respectively, a strength ratio 

o f  =0.92:1. Whilst load range levels giving life o f  5,000,000 cycles for TM11B 

R=0.1 and R=0.5 are 6.62kN and 4.47kN respectively, a strength ratio o f  ~  1.48:1.
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Figure 11.12: Load-Life Data for the Different R-Ratios for TM 11B
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11.3 Variable Amplitude Loading

The major reason for carrying out variable-amplitude loading tests is that a 

prediction of fatigue life under complex loading can be made. By calculating the 

cumulative effect o f  damage from random load-time histories, the concept developed 

by Palgrem-Miner -  Miner's Rule can be checked. Miner first presented the Palgrem 

linear damage concept as a measure of fatigue damage, with the basic assumption o f  

a constant work absorption per cycle leading to a linear summation of cycle ratio or 

damage.

11.3.1 Block Loading Coupon Test Results

Figure 11.13 shows the results of the two block load levels tested. The graph is 

plotted to show the effect o f  the life against the range o f  both load levels applied in 

each o f  the block loading signals. This shows that the first load range o f  each level 

has the most damaging cycles.

Fatigue Load Ratio R=0.1

A F , = 2 4 7 .99N ,AF,o>

0li f
<ua

♦ 1 s t  B lo c k  L o a d  F1 R a n g e  v s . T otal R e p e a t s  R

 F itted  C u rve ( 1 s t  B lo c k  L o a d  F1 R a n g e  v s . T ota l C y c le s  Nf)

10 100 1000 10000
Total F, and F2 Repeats, R

Figure 11.13: Block Loading Results, R=0.1

The suitability o f  Miner’s rule for cumulative damage evaluation will be discussed in 

Section 12.2.1, using the test results presented in this section.

11.3.2 Variable Amplitude SAE Bracket Coupon Test Results

Figure 1 1.14 shows the results of using the SAE Bracket load -time history. TM11A 

has better fatigue performance than GMl due to the fact that TM 11A has twice the

122



www.manaraa.com

weld line lengths. However, TM11A does not offer twice the strength due to more 

weld line. GM 8  load range lives are a magnitude lower than either of the lap-shear 

geometries.
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Figure 11.14: Variable Amplitude Fatigue Loading Results for G M l, G M 8 , TM11A 

Final Failure

The suitability of Miner’s rule for cumulative damage evaluation will be discussed in 

Section 12.2.2, using the test results presented in this section.

11.4 Coupon Testing Failure Modes and Locations

On close examination o f  the crack initiation sites on failed specimens, there are the 

two traditional types o f  failure locations: the weld throat and weld toe as shown in 

figure 11.15. The typical failure location for each geometry and supplier is shown in

Table 11.1.

Throat Failure

▼

Toe Failure

Figure 11.15: Traditional Failure Locations in Welded Structures

123



www.manaraa.com

Table 11.1: Typical Failure Location for all Coupon Geometries.

Geometry Failure Locations Loading
GM1 Throat Constant
GM2 Throat and Toe Constant
GM2 R=0.5 Throat Constant
GM11A Toe Constant
GM11B Toe Constant
TM1 Throat and Toe Constant
TM2 Toe Constant
TM11A Toe Constant
TM11B Toe Constant
GM3 Throat Constant
GM4 Throat Constant
GM5 Toe Constant
GM 6 Toe Constant
GM 8 Throat Constant
TM1 IB R=-l Toe Constant
TM11B R=0.5 Toe Constant
GM11A Toe Block Loading
TM11A Toe Variable
GM1 Throat Variable
GM 8 Toe Variable

The partially welded Ml specimens display only throat failures, whilst the fully 

welded M2 specimens provide a mixture o f  throat and toe failures. Figures 11.16 

11.17 show the general structure of the failures for both Ml and M2 specimens.

Figure 1 1.16: Typical Throat Failure of Ml Specimens
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Figure 11.17: Typical Failures o f  M2 Specimens a) Throat Failure, b) Throat and Toe 

Failure, c) Toe Failure

For GKN and TKA M l 1A and Ml IB, the typical toe failures are shown in figure 

11.18, whilst typical peel failures for GM3 and GM4 are shown in figure 11.19.

Figure 1 1.18: Typical Toe Failure for a) M 1 1 A, b) M 1 1B

Figure 11.19: Typical Throat Failures for a) M3 b) M4

Figure 11.20 shows the typical failures for GM5, GM 6  and GM 8  coupons.
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Figure 11.20: Typical Failure o f  a) M5 Toe, b) M6  Toe, c) M 8  Throat

Investigating the effects o f  mean stress on TM1 IB and GM2 is shown in figures 

1 1 . 2 1  -  1 1 . 2 2  respectively.

Figure 11.21: Typical Weld Toe Failure o f  TM1 IB under R-Ratios o f  a) R=0.5, b) 

R=-l

Figure 11.22: Typical Weld Toe Failure o f  GM2 under R-Ratios o f  R=0.5

Figure 11.23 shows the general structure o f  failure for GM11A under block loading 

conditions.

1 2 6
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Figure 11.23: Typical Failure Location o f  Variable Amplitude Block Loading 

G M 11A

Figure 11.24 shows the general structure o f  the failures for the variable amplitude 

loading o f  GM 1, T M 11A and GM 8 .

Figure 11.24: Typical Failure Locations for Variable Amplitude SAE Bracket 

Loading o f  a) GM 1, b) TM 1 1 A, c) GM 8

11.4.1 Fracture Surface Examination

From observing the main modes o f  failure shown in figures 11.15 -  11.24, figure 

11.25 shows how the following fracture surfaces were examined using the traditional 

methodology o f  failure modes. The typical fracture surfaces for weld toe failures and 

weld throat failures are shown below in figures 1 1.26 -  11.28.

Bottom Bottom Throat FailureThroat Failure BottomToe Failure

C'rack Path 
Viewing Direction

Figure 1 1.25: Viewing Angles for the Fracture Surface Examination

Figure 1 1.26 shows the typical fracture surface for all the coupon weld toe failures. 

The surface shows that the cracks initiated from multiple areas mainly in the centre 

o f  the weld. At the start/stop areas o f  the weld, more latter stage crack propagation 

than initiation occurred.
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Figure 11.26: Typical Weld Toe Failure -  GM 11A

For typical weld throat failures, figures 11.27 -  11.28 show the fracture surfaces. 

From figure 11.27 again the crack initiation sites are more in the centre of the weld 

than at either the start/stop. This is shown quite clearly as at the edges, crack 

propagation occurs. Figure 11.28 shows the weld view o f the throat failure, and this 

to shows similar results.

Figure 11.27: Typical Weld Throat Failure -  Sheet View, GM 1
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Figure 11.28: Typical Weld Throat Failure -  Weld View, GM 1

Figures 1 1.29 -  11.30 show the typical throat failures for the peel specimens GM3 

and GM4. Figure 11.29 shows the sheet view of the fracture surface with the fatigue 

initiation occurring from the root. Damage is noticeable nearer the weld surface due 

to the bending motion during the fatigue testing.

Figure 11.29: Typical Weld Throat Failure -  Sheet View, GM3

Figure 11.30 shows the weld view o f  the fracture surface, showing also that in parts 

there are some weld defects such as porosity in the weld material.
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Figure 11.30: Typical Weld Throat Failure -  Weld View, GM3

Figure 11.31 shows a typical T-Shaped geometry fracture surface. Fatigue initiation 

occurs from the root o f  the weld and then the crack propagates through the weld start 

and into the parent material.

Figure 11.31: Typical Weld Throat Failure -  Weld View, GM 8

As all the fracture surfaces show similar trends to figures 11.26 -  11.31, the fracture 

surfaces for the remaining coupon geometries are shown within Appendix 5.

Noticeable from both Table 11.1 and the fracture surfaces in Appendix 5, TM1 has 

two modes o f  failure which also show that the main initiation sites occur from the 

centre of the weld and propagate out to the weld start/stop. The throat failures of

1 3 0
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TM1 could occur from the areas at the root of the weld where the weld metal has not 

filled the gap -  i.e. weld undercut.

GM2 also has two failure modes, which also have the main initiation sites occurring 

from the centre of the weld. For weld toe failure the cracks initiated from the toe of 

the weld even though there is a large crack, which could have formed during the 

welding cycle, which also has secondary fatigue cracks surrounding it. Wherever 

there are welding defects on the weld more fatigue cracks initiate.

For the majority o f GM2 coupons the failure mode was through the weld throat. 

From the sheet fracture surface, it is noticeable that the weld did not penetrate the 

parent material completely. From this many fatigue crack initiation sites were 

located. Also present within the fracture surface are some porosity cavities. The weld 

fracture surface shows areas in the weld root with poor penetration. Porosity holes 

are also noticed within the weld. Fatigue cracks are initiating from the weld root due 

to the welding defects present.

Peel geometries GM3 and GM4, which show, throat failures initiating from the root 

and propagating into the weld. Within the fracture surfaces, noticeable are weld 

defects such as porosity holes. Fatigue initiation occurred from the weld root.

For T-shaped coupons under all three loading conditions, failure was from the weld 

throat. Fatigue cracks have initiated from the weld root and propagated around the 

weld toe. In areas o f weld metal overlap fatigue initiation sites are more frequent.

From all the fracture surface analysis the traditional definitions o f the weld throat 

failures and weld toe failures (as shown in figure 11.15) require redefining due to the 

clear distinction between the two types of throat failure and this will be discussed in 

section 12.3.

11.5 Coupon FE Modelling Results

The purpose of FE modelling of coupons is to produce the "Structural Stress" and 

use this stress to convert the load life data into stress life data. FE analysis was done
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using the models shown above in figures 10.33 -  10.34, and the actual test data 

shown in section 11.1. The method is summarised below in figure 11.32.

A F

b<1

Life, N f

Figure 11.32: Analysis Process from Load- Life Curves to S-N Curves

For analysis purposes when using MSC.Fatigue, elements either side o f  the weld (the 

weld toe elements) were grouped as Weld Toe elements as this is where the stress 

would be taken from, as shown in figure 11.33.

Figure 1 1.33: FE Model Showing Weld and Weld Toe Element Location

From all the constant amplitude testing, there were three methods of failure by the 

weld toe or the weld throat - tw o types. For analysis purposes, the weld toe is the 

only failure location at which all the current FE packages predict the stress. For the 

weld throat failures, the FE stress locations must be researched and the two possible 

locations are shown below in figure 1 1.34. The correct surface o f  the element must 

also be chosen, as shown in figure 11.35.

W e ld  E le m e n t s

W e ld  T o e  E le m e n t s
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Side B Weld Toe

•  •
elements

/

Weld
Side A

Figure 11.34: Possible Locations for Extracting the Predicted Stress for Throat 

Failures

Figure 11.35: Surfaces o f  an Element

11.5.1 FE Modelling With Experim ental Verification

Experimental verification of  the FE models in the form o f strain gauges and 

photoelasticity was required to compare the stress distribution away from the weld. 

Also to gain FE confidence of  the method o f  modelling the coupon joints.

Coupon geometries were modelled and meshed using the MSC.Patran software based 

in Corns Automotive. The structures were then analysed by another FE package 

MSC.Nastran to obtain the structural deformation, stress and strain. The deformation 

models o f  the three coupons used for photoelasticity are shown below in figure

z

11.36.
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Figure 11.36: Deformation Models o f  Coupons used in Photoelasticity

11.5.1.1 Effects of Weld Representation in FE Model

For M2 three different methods o f  modelling the weld line were considered and 

shown in figure 11.37: 1) normal Quad4 mesh, 2) strengthening the weld with 

elements forming a triangle at the weld, referred to as Tri, 3) doubling the thickness 

o f  the weld, referred to as “Thick” weld representation.

Thick = double
weld thickness

Tri

Figure 11.37: Alternative Methods o f  Modelling the Weld

The stress distribution along the coupon centre line obtained for each variation of the 

FE analysis of the M2 coupon is shown in figure 11.38a and b. For each variation, 

the maximum principal stress and the stress in the “y” direction ( a y stress), i.e. the 

longitudinal stress, were extracted and plotted against the distances from the weld 

line in figure 11.38a and b. Noticeable from the graph, the further away from the 

weld the less the weld stress raising effect has on the a y stress distribution for the 

“Thick” FE variation.

The results in figure 11.38 suggests that using the different methods o f  representing 

the weld in an FE model has little effect on the predicted values o f  stress at any 

distance greater than 1 1mm away from the weld.

134



www.manaraa.com

28

 N orm al cry 1 9 .0 7 5 m m

 Thick a y  1 9 .0 7 5 m m

-  * Tri a y  1 9 .0 7 5 m m

1 6

1 0  1 2  14  1 6  18  2 0  2 2  2 4  2 6  2 8  3 0

Distance from the weldline, mm

a)

N orm al m a x  prin 1 9  0 7 5 m m

- - - Thick m a x  prin 1 9 .0 7 5 m m

Tri m a x  prin 1 9 .0 7 5 m m2 4  -

to 2 2

2 6 2 8 3 010 12 16 18 20 22 2 414

i > Distance from the weldline, mmb)

Figure 11.38: Various Ways o f  Modelling the M2 Weld a) a y Stress, b) Max 

Principal Stress (Applied Load lkN)

The weld was also represented by a 8 -noded solid/brick FE elements, whose stress 

results were compared with those from the shell-element model. The comparison of 

stress distribution between the solid and shell models is shown in figure 11.39. The 

figure indicates that solid-element stress values obtained were only very marginally 

lower than, if not almost identical to, their shell-element equivalents.
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Figure ) l .39: Difference between Solid and Shell M2 Models (Applied Load lkN)

Overall, it appears that little difference exists among stress results from various FE 

weld representations. In addition, figures l l .38 -  11.39 also indicate no significant 

difference between the maximum principal stress and the stress in “y” direction o y 

stress. Consequently, for the rest o f  the Results section, only oy stress results from FE 

models using the shell-element weld representation are presented.

The stress was collected from three distributions:

1) The centre line of the weld

2 ) 1 0 mm left o f  the centre line

3) 10mm right o f  the centre line

The stress along the longitudinal "y" direction "oy" was chosen, as this is the stress 

that is aligned with the loading direction i.e. the longitudinal stress. Figures 11.40 

1 1.42 show the longitudinal stress distribution across the coupon width at distances 

from the weld. Figure 11.40 shows that further away from the weld in the Ml 

coupon, the three stress distributions are very close.

♦  N o r m a l o y ■ N o rm a l M ax P rincipal A T h ick  o y X  T h ick  m a x  principal

©  Tri o y X T ri m a x  principal •  so lid  o y X  so lid  m a x  principal
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Figure 11.40: Longitudinal FE Stress Results for Ml Joint at 6 kN

The same three stress results taken from the FE model o f  the M2 coupon are shown 

in figure 11.41. Again, further away from the weld, the stress values seem to 

virtually converge.
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Figure 11.41: Longitudinal FE Stress Results for M2 Joint at 6 kN

The stress distributions along the same three lines on the Ml 1A coupon are shown in 

figure 1 1.42 and, as one can see, 1 1mm from the weld, the stress values along the 

three chosen lines start to slowly converge, and become very close as the distance 

increases, in a similar fashion to those of Ml and M2 coupons.
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Figure 11.42 Longitudinal FE Stress Results for Ml 1A Joint at 6 kN

11.5.1.2 FE vs. Strain Gauge Results

Figures 11.43 -  11.45 compare results o f  the longitudinal stress converted strain 

gauge measurements against those o f  the predicted FE stress. At low loads, all the 

graphs show that the predicted and measured stress is very close, whilst at higher 

loads the FE stress values become lower than the strain gauge results.

1 6 0

— 1 kN 
— 2 k N  

4 k N
- X - 6 k N

X  M e a su r e d  1 kN  
»  M e a su r e d  2 k N  
+  M e a su r e d  4 k N  
-  M e a su r e d  6 k N

1 4 0

120

100
TO

CL
s
in 
in 
Ol

CO

6 0

4 0

2 4 2 68 10 12 14 1 6 18 20 22

D i s t a n c e ,  m m

Figure 11.43: Strain Gauge vs. FE Stress in Longitudinal Direction for Ml
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Figure 11.44: Strain Gauge vs. FE Stress in Longitudinal Direction for M2
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Figure 11.45: Strain Gauge vs. FE Stress in Longitudinal Direction for Ml 1A 

11.5.1.3 FE vs. Photoelasticity and Strain Gauging

The longitudinal stress distribution results for all three methods o f  stress evaluations 

for Ml coupon are presented in figure 1 1.46, which shows that the FE prediction o f  

longitudinal stress is slightly lower than the stress values obtained from the other two 

methods: photoelasticity and strain-gauge measurements.
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Figure 11.46: Ml 6 kN Comparison between FE, Photoelastie and Strain Gauging

The results from comparing the three methods o f  evaluating stress in M2 are shown 

in figure 11.47 The FE results are again under-predicting the stress measured by the 

strain gauge in the coupon, but they fall within the photoelastie stress scatter.

250

10 20 30

Distance from the overlap edge, mm

— 6KN Photoelastie 

■ 6kN Strain gauge 

- A -  6kN FE centre line

Figure 11.47: M2 6 kN Comparison between FE, Photoelastie and Strain Gauging

The FE results for M i l  A produced a significant under-prediction o f  the coupon 

longitudinal stress when compared to both the photoelastie and strain gauging 

results, as shown in figure 11.48. This under-prediction could also be due to how the 

FE coupon was modelled, which is discussed in section 12.4.1.
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Figure 11.48: Ml 1A 6 kN Comparison between FE, Photoelastie and Strain Gauging
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11.5.2 Coupon Models used for Volvo S tructural Stress Calculations

Coupon geometries were modelled and meshed using the MSC.Patran software based 

in Corus Automotive. The structures were then analysed by another FE package 

(MSC Nastran) to obtain the structural deformation stress and strain. Figures 1 1.49a 

and 11.49b show the deformation models for GKN and TKA coupon geometries.
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Figure 11.49: The Deformation Models for a) GKN Coupons, b) TKA-Tallent 

Coupons

11.5.2.1 Volvo S tructural Stress for Weld Toe Failure

Figures 11.50 -  11.52 show the stress contour map at the weld toe with a lkN load 

applied for TM11A, TM1 IB and TM2 with the corresponding illustration of failure 

in the coupons. Table 11.2 shows the structural stresses used to convert load-life to 

stress-life curves.

Table 11.2: Structural Stress for Toe Failures for a lkN Applied Load

Coupon
Failure

Location
Structural
Stress MPa

GM11A Weld Toe 27.525
GM11B Weld Toe 25.842
TM11A Weld Toe 27.421
TM11B Weld Toe 26.630
TM2 Weld Toe 30.954

Weld Elements
I I X I I I

Weld Toe Elements j

1 . 1 1 n i l 1 1 1 1

Figure 1 1.50: a) TM1 1A FE-Fatigue Stress Contour Map at Weld Toe, b) Location 

of TM 11A Failure

142



www.manaraa.com

Crmjs OCTAL/.'

Figure 11.51: a) TM 11B FE-Fatigue Stress Contour Map at Weld Toe, b) Location o f

T M 1 1B Failure

Figure 11.52: a) TM2 FE-Fatigue Stress Contour Map at Weld Toe, b) Location o f  

TM2 Failure

GM11A and GM1 IB also fail at the weld toe and the MSC.Fatigue stress contour 

maps and illustration o f  failure in the coupons are shown in figures 11.53 -  11.54.

1kN

a)

Figure l 1.53: a) GM11A FE-Fatigue Stress Contour Map at Weld Toe, b) Location 

o f  GM l l A Failure
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1 kN

a)

Figure 11.54: a) GM1 IB FE-Fatigue Stress Contour Map at Weld Toe, b) Location 

o fG M l IB Failure

11.5.2.2 Volvo S tructural Stress for Weld T hroat Failures

All current FE packages have a limitation, which is the inability to predict stress for 

throat failures. So to use the FE packages, the predicted stress used to calculate 

fatigue life was researched. From investigating the possible stress locations, shown in 

figure 1 1.34, fatigue lives must be calculated from either o f  these locations. This is 

done through using the relevant stress from the elements and remembering that each 

element has two sides (shown in figure 11.35).

Both extraction locations have been investigated and the stresses for throat failure are 

shown in Table 11.3. Table 11.3 shows that Side B stresses are the highest for the 

majority of the welds and so therefore the most likely side for fatigue failure to 

occur.

Table 11.3: Structural Stress at Each Surface of the Element for Throat Failures for a 

1 kN Applied Load

Coupon
Failure

Location
Structural Stress MPa

Side A Side B
TM 1 Weld Throat 0.009 51.867

GM1 Weld Throat -0.849 48.942
GM2 Weld Throat 0.903 39.129

GM3 Weld Throat 488.240 330.820
GM4 Weld Throat 426.050 302.150
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Figures 11.55 -  11.57 show the results from the MSC.Fatigue stress contour maps 

for GM1, GM2 and TM1 with the corresponding illustration of failure in the 

coupons.
lkN

W eld T oe E lem en ts

W eld E lem ents

a)

Figure 11.55: a) GM1 FE-Fatigue Stress Contour Map at Weld Throat, b) Location 

of GM1 Failure

Figure 11.56: a) GM2 FE-Fatigue Stress Contour Map at Weld Throat, b) Location 

of GM2 Failure

a)

Figure 1 1.57: a) TM1 FE-Fatigue Stress Contour Map at Weld Throat, b) Location o f  

TM1 Failure
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Both GM3 and GM4 (peel geometries) failed at the weld throat and therefore the FE 

stress was also located behind the weld, the results are shown in figures 11.58 

11.59.

1kN

a)

Figure 11.58: a) GM3 FE-Fatigue Stress Contour Map at Weld Throat, b) Location 

of GM3 Failure

Figure 11.59: a) GM4 FE-Fatigue Stress Contour Map at Weld Throat, b) Location 

o f  GM4 Failure

With the coupon geometries modelled and the stress locations found, the Ag /AF must 

be calculated. The results from analysing all the coupon geometries are shown in 

Table 11.4, which will be used to convert the load-life test data to the S-N master 

curves.
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Table 11.4: MSC.Fatigue (Volvo) Structural Stress for a lkN Applied Load

Coupon
Failure

Location
Structural
Stress MPa

Bendin g Ratio
Curve Value

GM11A Weld Toe 27.525 Flexible 0.639
GM11B Weld Toe 25.842 Flexible 0.632
TM11A Weld Toe 27.421 Flexible 0.660
TM11B Weld Toe 26.630 Flexible 0.633
TM2 Weld Toe 30.954 Flexible 0.704

Side B
TM1 Weld Throat 51.867 Flexible 0.749
GM1 Weld Throat 48.942 Flexible 0.734
GM2 Weld Throat 39.129 Flexible 0.756
GM3 Weld Throat 330.820 Flexible 0.990
GM4 Weld Throat 302.150 Flexible 0.993

11.5.3 Coupon Models used for Batteile S tructural Stress M anual Calculations

The Batteile Structural Stress was calculated from these three methods for all the 

coupon joints:

1) Manual Calculation

2) FLOW software

3) Fe-Safe Verity®

The results shown are the Manual Calculation, with the FLOW and Verity results in 

the Appendix 6.

All techniques using the Batteile method require the "Structural stress" to be 

converted into the Equivalent Structural Stress as described in section 10.7. 

Equivalent Structural stress is calculated from the structural stress using Eq.15

A ct
AN = — V  Eq.15

/ 2m

This correction factors in the denominator of Eq.15 are based on the unit 'mm', but 

this unit is not used in the formula so as a result the equivalent structural stress still
'y

uses the unit Nmm"~ or MPa.

Coupon geometries were modelled and meshed using the MSC.Patran software based 

in Corus Automotive. The structures were then analysed by another FE package 

(MSC Nastran) to obtain the structural deformation stress and strain. Figures 11.60a
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and 11.60b show the deformation models for GKN and TKA-Tallent coupon 

geometries.
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Figure 11.60: The Deformation Models for a) GKN Coupons, b) TKA-Tallent 

Coupons

11.5.3.1 Battelle Structural Stress for Weld Toe Failures

Using the method explained in section 10.7 the results o f  the Battelle Manual 

Calculation is shown below in Figures 11.61 -  11.65. Alongside all the figures is the 

typical picture of each o f  the weld geometries, which were tested. The manual 

calculation involved calculating the structural stress and the equivalent structural 

stress. For all geometries the equivalent structural stress is higher than the structural 

stress.
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11.61: Manual Calculation of T M 11A with Image o f  Weld
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re 11.63: Manual Calculation o f  TM2 with Image o f  Weld
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Figure 11.64: Manual Calculation o f  GM11A with Image o f  Weld
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Figure 11.65: Manual Calculation o f  G M 11B with Image o f  Weld

11.5.3.2 Battelle Structural Stress for Weld Throat Failures

The structural stress was calculated from the same location as the Volvo structural 

stress i.e. the Z1 plane o f  side B as shown in figure 11.66. Figures 1 1.67 -  11.71 

show the results o f  the Battelle Manual calculation for the weld throat failures. For 

all geometries the equivalent structural stress is higher than the structural stress.

Side B

— + —  •  •  •  •

+  •  •

Weld

Figure 11.66: Location o f  Structural Stress used in Calculations

Weld Toe 
Element
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Figure 11.68: Manual Calculation o f  GM2 with Image of Weld
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Figure 11.69: Manual Calculation o fT M l with Image o f  Weld
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Figure 11.70: Manual Calculation o f  GM3 with Image of Weld
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Figure 11.71: Manual Calculation o f  GM4 with Image o f  Weld

11.5.3.3 Battelle Structural Stress Manual vs. FLOW and Verity

Figures 11.72 -  11.73 show the difference in the three methods of predicting the 

Battelle Structural Stress. For both GM11A and GM11B, the manual and Verity 

results are close with FLOW marginally higher. As these results are consistent the 

other difference between the three methods for the other coupon geometries are 

shown in Appendix 6 .
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Figure 11.72: Battelle Equivalent Structural Stress Manual vs. FLOW & Verity for 

GM11A
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Figure 11.73: Battelle Equivalent Structural Stress Manual vs. FLOW & Verity for 

GM11B

Table 11.5 shows the structural stresses used to convert the load-life test data into the 

stress life curves.
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Table 11.5: Battelle Structural Stress for a lkN Applied Load

Coupon
Failure

Locations
Equiva ent Structural Stress MPa

Manual Centre FLOW Centre Verity Centre

GM11A Weld Toe 28.553 29.035 28.058
GM11B Weld Toe 29.840 30.497 30.204
TM11A Weld Toe 30.062 29.688 30.006
TM11B Weld Toe 30.516 31.034 30.866
TM2 Weld Toe 35.965 36.836 36.437

Side B Side B Side B
TM1 Weld Throat 50.921 51.916 50.595
GM1 Weld Throat 51.235 52.284 50.822
GM2 Weld Throat 44.127 45.369 45.218
GM3 Weld Throat 361.684 375.238 370.489
GM4 Weld Throat 369.096 380.267 377.384

11.5.4 Structural Stress Master Curves

Using the Structural stress values shown in both Tables 11.4 and 11.5 and the load- 

life data in section 11.2, the conversion into Stress-Life Master Curves will be 

described in sections 12.4.2 and 12.4.3.

11.6 FIJCA Component Fatigue Test Results

The purpose o f  FUCA component testing is to provide fatigue life test data for 

comparison with the FE predictions o f  the same component.

11.6.1 Failure Locations

From all the constant amplitude component tests, the majority o f  the components had 

the crack initiating from the notch at the weld start and propagating through the weld 

throat (Figure 11.74a) before propagating out into the parent material in the flange 

(Figure 11.74b). Component #12 was the only component where the crack initiated 

from the weld notch and propagated directly through the flange parent metal as 

shown in Figure 11.75. Termination for all the tests required a crack size o f  40 

50mm, this is shown in Figure 11.76.
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Figure 11.74: Typical Failure Locations in the FUCA a) Crack Propagation through 

the Weld Throat, b) Crack Propagation from the Weld Throat into the Parent Metal

Figure 11.75: Crack Initiated at the Notch and Propagated through the Parent 

Material in the Flange

Figure 11.76: Prescribed Termination Criterion of Crack Length for Component 

Tests

From all the variable amplitude component tests using the SAE Bracket Load-Time 

History, all the components failed in a similar way to constant amplitude as shown in 

figure 11.77.
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Figure 11.77: Typical Failure Locations in the FUCA for Variable Amplitude a) 

Block Loading, b) SAE Bracket Load-Time History

11.7.1.1 Fracture  Surface Analysis

From observing the main modes o f  failure shown in figures 11.75 -  11.77, figure 

11.78 shows how the following fracture surfaces were examined. The typical fracture 

surfaces for FUCA weld throat failures are shown below in figures 11.79.

eld

Top

Crack
Bottom

Crack Path 
Viewing Direction

Figure 11.78: Viewing Angles for the Fracture Surface Examination

Figure 11.79 show the typical weld failure seen in the components. Fatigue initiation 

sites were fairly hard to identify due to damage caused during the fatigue test, and 

subsequent corrosion of the fracture surface due to long testing times in a non- 

environmentally controlled industrial laboratory. The initiation sites would be 

located just in from the paint layer at the root of the weld.
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Figure 11.79: Typical FUCA Component Throat Failure

As all the other FUCA components show very similar fracture surfaces they will be 

found in Appendix 7.

11.6.2 Constant Amplitude FUCA Component Testing

Initial testing o f  a front upper control arm (FUCA) on the component rig started with 

constant amplitude loading o f  three different load levels of ±2.5kN, ±4.0kN and 

±7.0kN at 2Hz, with the crack propagation measured until component failure at a 

crack size o f  40mm. At 7kN there is some scatter in the results, whilst at both 2kN 

and 4kN the fatigue lives were consistent as shown in figure 11.80.

1 6 0
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Figure 11.80: Constant Amplitude FUCA Results (Crack Length 40~50mm)

Component #12 is the only component where the crack did not propagate through the 

weld, but failed through the parent metal on the flange. With components #9 and 

#14, unfortunately the crack initiation size o f  10mm was not noticed on the surface 

o f  the weld until failure. Further tests were undertaken to obtain crack initiation data 

and final number of cycles to failure.

The results in figure 11.81 shows that from the ten tests there is reasonable scatter 

between the results at each level due in part to slight differences in the placement of 

the weld and crack start position. It is also worth noting from figure 11.81 that, at 

±2.5kN there is a much larger scatter in the life for crack initiation to 10mm 

(between 430,000 and 700,000 cycles).
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Figure 11.81: Crack Length versus Fatigue Life for FUCA

Further analysis of the data shown in figure 11.81 for variable amplitude loading 

conditions requires information of crack lengths to 30mm. For subsequent prediction 

of FUCA component, lives to crack lengths of 10mm is also required. Unfortunately 

for some tests this crack initiation information is not available. This is due to the 

crack initiating from the weld root and not visible to the eye as it has not appeared on 

the surface o f  the weld, but is still propagating through the weld. To gain this 

information for some crack initiation, extrapolation o f  the data is required.

The component fatigue test results were processed in more detail with measured 

component lives to specific crack sizes shown in figure 11.82 for lives at crack 

initiation (first visible crack length o f  10mm), 20mm and 30mm.

With a high load level o f  ±7.0kN, the data collected was in the 104 cycles range and 

figure 11.82 shows that measured components average life to crack size of 1 0 mm 

occurred at 14594 cycles. For the crack to propagate to 20mm, the life is 16362 

cycles whilst for the crack to propagate from 20mm-30mm took a further 1159

cycles. The average crack growth rate is L 172xl0‘3mm/cycle.

With an intermediate load level o f  ±4.0kN, the data collected was up to 105 cycles 

range and figure 1 1.82 shows that measured components average life to crack size of
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10mm occurred at 79999 cycles. For the crack to propagate to 20mm, the life is 

94113 cycles whilst for the crack to propagate from 20mm-30mm took a further

18428 cycles. The average crack growth rate is 2.6 6 x 10 ‘4 mm/cycle.

With a low load level o f  ±2.5kN, the data collected was up to 106 cycles range and 

figure 11.82 shows that measured components average life to crack size of 1 0 mm 

occurred at 500353 cycles. For the crack to propagate to 20mm, the life reaches 

651453 cycles whilst for the crack to propagate from 20mm-30mm took a further

115862 cycles. The average crack growth r a t e ^ / ^ y  is 3 .91xl0 '5mm/cycle.

10

y = 99 676x

y = 95.731x4> 
T3 
3

y = 104 03x

♦ Life to 10mm ■ Life to 20mm
Power (Life to 10mm)  Power (Life to 20mm) —  Power (Life to 30mm)

* Life to 30mm

1 --
10000 1000000100000

C y c le s ,  N f

Figure 11.82: Actual Component Lives to Various Crack Lengths (R=-l)

11.6.3 Variable Amplitude Block Loading

Figure 11.83 shows the results o f  the two block loading levels. The graph is plotted 

to show the effect of the life against the range o f  both load levels in each o f  the block 

loading signals. This shows that the first load range o f  each level has the most 

damaging cycles.
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Figure l l .83: Block Loading Results for R-Ratio— l

Table 11.6  shows the test results for all FUCA components tested at R-ratios of 

R=0.l and R=-l block loading sequences, shown in figures 10 .20-  10.22.

Table 11.6: FUCA Block Loading Results

Specimen ID Repeats Failure Location R Value
#40 4000 Toe Failure R= 0.1
#41 145.1 Toe Failure R= - I
#42 180.1 Toe Failure R = -l
#43 154.2 Toe Failure R= -1
#44 1301.3 Toe Failure R= -1
#45 1 1 0 1 . 1 Toe Failure R = -l
#46 1 1 0 1 . 1 Toe Failure R= -1

11.6.4 Variable Amplitude SAE Bracket Load-Time History

Variable amplitude results using the SAE Bracket Load -  Time History are shown in 

figure 11.84. The majority o f  the tested components had results which were very 

consistent between 150 and 200 block repeats of the SAE Bracket signal as shown in 

figure 11.85. Only component numbers 26, 34, 36 and 37 were unsuccessful in 

failing within the 150-200 repeats range.
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Figure 11.84: SAE Bracket Load -  Time History

During testing of  component number 26, there were many problems with the rig due 

to parts being worn out and requiring replacement. This was believed to be the main 

cause for the longer test life o f  the FUCA, as no accurate load was being applied. 

The short life shown for component number 34 arises from the anti-roll bar link, 

which applies the load to the FUCA being worn out so no accurate loading was being 

applied. The shorter life o f  component number 36 comes from the weld being 

imperfect and resulting in a small notch to the weld as shown in figure 1 1 .8 6 . 

Regarding the shorter life o f  component number 37, after investigating the weld 

start/stop location no defect or imperfection was noticeable in the weld and so the 

shorter life was just due to fatigue.

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 (

# 2 6 # 2 7 # 2 8 # 2 9 # 3 0 # 3 1 # 3 2 # 3 3 # 3 4 # 3 5 # 3 6 # 3 7 # 3 8

CD C o m p o n e n t  Life 3 4 8 1 7 8 1 9 5 1 7 2 1 9 9 1 9 3 1 6 6 1 9 7 1 1 7 1 8 5 9 6 8 8 1 7 5

B lo c k  R e p e a t s

Figure 11.85: Variable Amplitude Results ± 7kN
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Notch in 
Weld toe

Figure 11.8 6 : Component 36 with notched weld

11.7 FUCA Life Predictions -  Constant Amplitude Loading

The ability to accurately predict the fatigue lives o f  actual test components is a 

method that will enable a large reduction in cost and decrease time to production of 

cars for automotive manufacturers. This will be achieved by using the S-N curves 

produced from the coupon fatigue test data and together with the weld root element 

stress to calculate the estimated fatigue lives o f  the FUCA component.

The models used were built as described in section 10.6.3.

Both the Volvo and Battelle methods deal with "toe failure" only, and require the 

structural stress to be calculated from the weld toes. This is performed by selecting 

the required weld lines from which the maximum structural stress will be 

determined.

However, the mode of  failure for the FUCA component was identified as "throat 

failure". There is no established procedure for locating and calculating the structural 

stress required for fatigue analysis. Consequently, determining the throat-failure 

structural stress became one o f  the main areas o f  investigation and development in 

my current EngD research programme.

11.7.1 FUCA [Model Volvo Method

All four baseline models were investigated using the peel statistical analysis curves 

shown in section 12.4.2 - figure 12.46, which exhibited a similar failure mode to the 

FUCA components -  Throat Failure.
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The stresses chosen on the weld line were the first 10 nodal stresses, from this the 

first stress and the maximum (max) stress o f  the first 6  elements was used to predict 

the life (shown in figure 11.87). Using the first and max stresses from the models and 

rearranging Eq.36 to obtain the estimated life in cycles of the FUCA component. 

Values o f  the constants ‘a ’ and ‘b ’ used were from the master weld S-N curves for 

50% and 99.87% certainties o f  survival.

a  = aN /  Eq.36

Range o f  elem ents used to 
locate max stress

1sl Stress

Figure 1 1.87: Locations o f  the U1 and Max Stress

For calculating the predicted life the calculated Volvo Structural Stress will use the 

formula generated from the peel S-N curve shown in figure 12.55. Table 11.7 shows 

the stress range and life values generated.

Table 11.7: Volvo Structural Stress and Life Calculations using 50% Survival Ao = 

3034.7JV/'0'2205

M odel
Stress

L ocation

± 7k N ±4k N ± 2 .5 k N

Stress R ange M Pa Life Stress R ange M Pa Life Stress R ange M Pa L ife

F u ll-

Length
1 St 6 5 7 .8 4 1.0 3E + 03 375.91 1 JO E + 04 2 3 4 .9 4 1.0 9 E + 0 5

M ax 7 2 5 .5 0 6 .5 8 E + 0 2 4 1 4 .5 7 8 .33E + 03 259.11 7 .0 2 E + 0 4

F ull-
Length

1 St 3 3 5 .4 0 2 .1 8E + 04 191.66 2 .7 6 E + 0 5 119 .79 2 .3 2 E + 0 6

M ax 3 6 9 .2 2 1.41E + 04 2 1 0 .9 8 1.78E + 05 131 .86 1 .50E + 06

C ut-Length

Standard
1st 7 5 0 .4 8 5 .6 5 E + 0 2 42 8 .8 5 7 .15E + 03 2 6 8 .0 3 6 .0 2 E + 0 4

M ax 7 9 9 .3 8 4 .2 4 E + 0 2 4 5 6 .7 9 5 .3 7 E + 0 3 2 8 5 .4 9 4 .5 2 E + 0 4

C’ut-Length

Triangular
1st 4 1 7 .9 6 8 .0 3 E + 0 3 23 8 .8 3 1.02E +05 149 .27 8 .5 6 E + 0 5

M ax 4 1 7 .9 6 8 .0 3 E + 0 3 23 8 .8 3 1.02E + 05 149.27 8 .5 6 E + 0 5

Investigating the effects of having full-length versus cut-length welds for the 1st 

stress is shown in figures 11. 8 8  -  11.89. Comparing the mean test data with the 50% 

certainty o f  survival (mean) the full-length weld accurately predicts the test data at 

7kN but over predicts the life at both 4kN and 2.5kN by 100,000 and 1,000,000
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cycles respectively. Whereas the cut-length weld under-predicts at 7kN and 4kN by 

10,000 and 50,000 cycles respectively but accurately predicts the 2.5kN test data.

10

z
0)3
3

Cl

E<
3raO
-I

C ut-L ength  T riangular W eld♦ C o n sta n t A m plitu de T e s t  D a ta   Full-Length  T riangular W eld

1 1--
1 .E + 0 1 1 E + 0 2 1 E + 0 3 1 .E + 0 4 1 E + 0 5 1 .E + 0 6 1 .E + 0 7

C y c le s ,  N f

Figure 11.8 8 : Ist Stress Full-Length vs. Cut-Length for Triangular Weld

Figure 11.89 shows that using the standard Volvo weld representation for the full- 

length and cut-length models under-predicts the life o f  the FUCA component by an 

order of magnitude. The full weld predicts 1000 cycles at 7kN whilst the cut-length 

predicts 600 cycles.

Figure 11.89: 1st Stress Full-Length vs. Cut-Length Standard Volvo Weld

♦ C o n sta n t A m plitu de T e s t  D a ta   F u ll-Length  W eld   C ut-L ength  W eld

1000 10000 100000 1000000 10000000 

C y c le s ,  N f
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Investigating the effects o f  the full-length versus cut-length weld triangular and the 

standard Volvo weld for the Max FE stress is shown in figures 11.90 - 11.91. Figure 

11.90 shows that for the full-length triangular weld under-estimates the test data by 

5000 cycles and over-estimates the results at 2.5kN. Whereas the cut-length 

triangular weld under estimates the life at both 7kN and 4kN but accurately predicts 

the test life at 2.5kN.

10

a>•o
D

Q.
E<T3a
o

1
10 100 1000 10000 100000 1000000 10000000

C y c le s ,  N f

Figure 11.90: Max Stress Full-Length vs. Cut-Length Triangular Weld

Noticeable in figure 11.91 that for the standard Volvo weld representation the curves 

under-predict the weld fatigue lives by over a l lA order o f  magnitude at 7kN, but at 

2.5kN a magnitude in life is the difference between the estimated and test data life.

♦ C o n sta n t A m plitu de T e s t  D ata Full-Length  Triangular W eld

C u t-L ength  T riangular W eld
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10

♦ C o n s ta n t A m plitu de T e s t  D a ta  Full-Length  W eld  C ut-L ength  W eld

1
1000000010 100 1000 10000 100000 1000000

C y c le s ,  N f

Figure 11.91: Max Stress Full-Length vs. Cut-Length Standard Volvo Weld 

11.7.2 FUCA Model Battelle Method

For retrieving the FE stresses for the Battelle method the models under investigation 

were the full-length triangular weld and the cut-length triangular weld. For each o f  

these models, to manually calculate the Battelle theory, the component models need 

to have the weld elements in a local coordinate system as shown in figure 11.92.

Figure 11.92: Local Coordinate Systems a) Full-Length Triangular Weld, b) Cut- 

Length Triangular Weld

The Battelle theory requires the correct nodal stresses from particular elements to be 

used for calculating the structural stress. For this method of throat failure there are 

two possible locations to collect the forces and moments for the weld root node: 

Inside the Weld Line and Weld Root Location, as shown in figure 11.93.
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% Inside Weld Line 
Location

Weld

Weld Root Node

Weld Root Location

Figure 11.93: Location o f  Elements for Nodal Force and Moment at Weld Root

From both o f  these locations, the structural stress has been calculated for both the 

full-length triangular weld and the cut length triangular weld. The Battelle manual 

calculation was done using the method described in section 10.6. The local 

coordinate system needed to be added to the weld root location for converting global 

forces and moments into the local coordinate system. The local coordinate system for 

the weld root location is shown in figure 11.94.

b)

Figure 11.94: Local Coordinate System for Weld Root Location a) Full-Length 

Triangular Weld, b) Cut-Length Triangular Weld

Figure 11.95a and b shows the three different paths for both locations (shown in 

figure 11.93) used to extract the forces and moments for the full-length and cut- 

length triangular welds.
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Path 1 
Path 2 
Path 3

a)

Path 1 
Path 2 
Path 3

T \

Figure 11.95: Nodal Paths used to Extract Forces and Moments for Structural Stress 

Calculations for a) Inside Weld Line Location, b) Weld Root Location

For calculating the predicted life the calculated Battelle Structural Stress will use the 

formula generated from the peel S-N curve shown in figure 12.55 in section 12.4.3.1. 

Table 11. 8  shows the stress range and life values generated.
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Table 11.8: Battelle Structural Stress and Life Calculations using 50% Survival Ao = 

3096.1..N f '°-2257

Model Method
±7kN ±4kN ±2.5kN

Stress Range MPa Life Stress Range MPa Lite Stress Range MPa Lite

Full Tri

Path 1 Inside Weld Line 197.80 1.96E+05 113.03 2.34E+06 70.64 1.88E+07
Path 2 1 aside Weld Line 54.59 5.89E+07 31.20 7.03E+08 19.50 5.64E+09

Path 3 Inside Weld Line 65.48 2.63E+07 37.41 3.I4E+08 23.38 2.52E+09
Path 1 Weld Root 450.71 5.11E+03 257.55 6.09E+04 160.97 4.89E+05
Path 2 Weld Root 423.77 6.71 E+03 242.15 8.01 E+04 151.35 6.43E+05
Path 3 Weld Root 405.95 8.12E+03 231.97 9.69E+04 144.98 7.77E+05

Cut Tri

Path 1 Inside Weld Line 259.82 5.86E+04 148.47 7.00E+05 92.79 5.61 E+06
Path 2 Inside Weld Line 60.23 3.81 E+07 34.42 4.55E+08 21.51 3.65E+09
Path 3 Inside Weld Line 30.81 7.42 E+08 17.61 8.86E+09 11.00 7.11E+10
Path 1 Weld Root 623.59 1.21 E+03 356.33 1.45 E+04 222.71 1.16E+05
Path 2 Weld Root 547.82 2.15E+03 313.04 2.57E+04 195.65 2.06E+05
Path 3 Weld Root 536.12 2.37E+03 306.36 2.82E+04 191.47 2.27E+05

Figure 11.96 shows both inside weld line and weld root locations for the full-length 

and cut-length triangular weld models. Regardless o f  where the weld start/stop 

location (i.e. full-length or cut-length) is, using the nodal forces from the elements 

‘Inside Weld Line’ over predicts the test data, thus showing that this location is not 

the most appropriate location. As shown in both 11.96a and b, using the Weld Root 

location under predicts the test results.

10
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P ath  3  Inside W eld  Line 
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b)

Figure 11.96: Difference between Locations o f  Element Nodal Forces a) Full-Length 

Triangular Weld, b) Cut-Length Triangular Weld

Using the nodal locations from the weld root and calculating the structural stress the 

differences between the weld start locations full-length and cut-length is shown in 

figure 1 1.97. The difference between ‘path 1 ’ full-length and ‘path 11 cut-length is 

clearly shown in the figure. This shows that for the full-length ‘path L is much 

closer to predicting the test data than the cut-length ‘path 1 \
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 Full W eld  P ath  1 W eld  R o o t
• Full W eld  P a th  3  W eld  R o o t

 C ut W eld  P a th  2  W eld  R o o t
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Figure 11.97: Difference between Triangular Weld Start Locations
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11.8 FUCA Life Predictions -  Variable Amplitude Loading

This section describes the result of using the master S-N curve for throat failure to 

predict FUCA test results for variable amplitude loading, using Block loading and 

SAE Bracket Load-Time History.

11.8.1 Variable Amplitude Block Loading

Investigating the effects o f  using the master S-N curve for throat failures for 

predicting the life o f  the FUCA component for the R=-l Block Loading Signal 1 and 

2 shown in figures 10.20 -  10.21. Using the stresses predicted and shown in Table

11.7 for both the full-length and cut-length models for the Volvo and Battelle 

Method are shown in figures 11 .98 - 11.101.

Figure 11.98 shows that for the cut-length models using Volvo and Battelle methods, 

both under-estimate the average life of the block loading test data, when using a 

Miner’s Damage constant D=l. For the full-length models, the Volvo method 

accurately predicts the test data whilst the Battelle’s method under-predicts the test 

data. The Volvo Method incorporates mean stress correction factors, and this shows 

that for both full and cut-length models, they over-predict the test data.

10 100 1000 10000 100000

V o lv o  Cut-Tri M e a n  S t r e s s  
C o rrectio n

V olvo  Full-Tri M e a n  S t r e s s  
C o rrectio n

V o lv o  Cut-Tri

B atte lle  Cut-Tri

V olvo  Full-Tri

B atte lle  Full-Tri

A v e r a g e  T e s t  D a ta  a t  7kN  R a n g e

  L o g -A v e r a g e  T e s t  D a ta  at 7k N  R a n g e

10 100 1000 10000 100000
R e p e a t s  o f  B lo c k  L o a d in g ,  R

Figure 11.98: Prediction of±7kN  Block Loading Signal 1, R=-l (D =l)

Checking the effect o f  changing the Miner’s Damage constant to D=1.6, shown in 

figure 11.99, shows the number o f  repeats does increase for all models but the cut-
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length models using Volvo and Battelle Method still under-predict the test data. The 

full-length model for Volvo over predicts the test data whilst the full-length model 

using Battelle still under-predicts the test data. Performing mean stress correction for 

the Volvo’s Method for both models over-predicts the results.

1 10 100 1000 10000 100000

V olvo  Cut-Tri M e a n  S tr e s s  
C o rrectio n

V olvo  Full-Tri M e a n  S tr e s s  
C o rrectio n

V o lv o  Cut-Tria>5
co

A v e r a g e  T e s t  D a ta  a t  7k N  R a n g e
B a tte lle  Cut-Tri

a.
L o g -A v e r a g e  T e s t  D a ta  at 7k N  R a n g e

V o lv o  Full-Tri

B a tte lle  Full-Tri

100 1000 10000 1000001 10

R e p e a t s  o f  B lo c k  L o a d in g ,  R

Figure 11.99: Prediction of ±7kN Block Loading Signal 1, R=-l (D= 1.6)

Figure 11.100 shows the predicted results for the Block loading signal 2 with a 

maximum load of 4kN. Both the cut-length models using Volvo and Battelle 

methods, both under-estimate the average life o f  the block loading test data, when 

using a Miner’s Damage constant D =l. For the full-length models, both Volvo and 

Battelle method over-predicts the test data. The Volvo Method incorporates mean 

stress correction factors, and this shows that for both full and cut-length models, they 

over-predict the test data.
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Figure 11.100: Prediction o f  ±4kN  Block Load ing  Signal 2, R =-l  ( D = l )

C h eck ing  the effect o f  ch an g in g  the M in e r ’s D am age constan t to D ^ l .b ,  show n in 

figure 11.101, show s the n u m b er  o f  repeats  does increase for all m odels  but the cut- 

length m odels  using V olvo  accura te ly  predict the average life o f  the test data whilst 

Battelle M ethod  still under-predic t  the test data. T he full-length m odel for V olvo 

over-pred ic ts  the test data whils t  the full-length model using Battelle still under- 

predic ts  the test data. Inc luding  m ean  stress correc tion  for the V olvo  M ethod  for both 

m odels  over-pred ic ts  the results.
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Figure 11.101: Prediction o f  ± 4 k N  Block L oading  Signal 2, R = -l  (D =1.6)

For the R = 0 .1 Block Load ing  signal show n in figure 10.22, the pred ic ted  F U C A  life 

is show n  in figure 11.102. Both the full-length and the cu t-length  m odels  o f  the 

V olvo  and  Battelle M ethod  under-pred ic t the test data by an o rder o f  m agnitude. 

R egardless o f  ch ang ing  the d am ag e  constan ts  value  from D=1 to D=1.6, the results 

still under-p red ic t  the test data.
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2  Range, D=1.6
c
B Battelle Cut-Tri 6.3kN Load
^  Range, D=11
£  Battelle Cut-Tri 6.3kN Load 
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Battelle Full-Tri 6.3kN Load 
Range, D=1

Battelle Full-Tri 6 3kN Load 
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1 10 100 1000 10000 

Repeats of Block Loading, R

Figure l 1 .102: Prediction  o f  7kN R = 0 .1 Block Loading  Signal
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11.8.2 Variable Amplitude SAE Bracket Load-Time History

U sing  the m aster  S-N curves for throat failure generated  for both V o lvo  and 

B atte lle ’s M ethod , the results o f  p red ic ting  the life o f  the F U C A  co m p o n en t  under 

SA E B racke t  loading  cond itions  is illustrated in figure 11.103. Both the full-length 

and cu t-leng th  m odels  for V o lvo  and Battelle under-p red ic t  the average  test life o f  

the com ponen ts .  Incorporating  the effects o f  m ean  stress for the V olvo  M ethod  in the 

fu ll-length  and cu t-length  m odels  also under-pred ic t  the average test data.

1 10 100 1000

Volvo Cut-Tri Mean Stress 
Correction

Volvo Cut-Tri

(ATJ
g  Volvo Full-Tri Mean Stress 
® Correction
co
^  Volvo Full-Tri
a>

CL

Battelle Cut-Tri

Battelle Full-Tri

1 10 100 1000 
SAE Bracket Load-Time History Block Repeats. R

EE73 Repeat Life P redictions Average Test Data. 163 cycles  Log-Average Test Data, 157 cycles

Figure 11.103: Prediction  o f  SA E  Bracket L oad-T im e Flistory ( D = l )

C h eck ing  the effect o f  chang ing  the M in e r ’s D am age  constan t to D =1.6 , show n in 

figure 11.104, show s the nu m b er  o f  repeats  does increase for all m odels .  Both the 

fu ll-length and cu t-length  m odels  for V olvo  and  Battelle under-p red ic t  the average 

test life o f  the com ponen ts .  Incorporating the effects o f  m ean  stress for the V olvo 

M ethod  in the fu ll-length and  cut-length  m odels  also under-predic t  the average  test 

data.
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Figure 11.104: Prediction  o f  SA E  Bracket L oad-T im e H istory (D =1.6)
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11.9 Results Summary

A recap of all the main results discussed in this chapter is set out in this section.

11.9.1 Coupon Testing for Data Generation

From all the results produced and analysed, these are the main conclusions:

• Test termination criteria had little effect on test results.

• There is little difference in the weld performance, on a per unit weld-line 

length basis, between lap-shear joints GM1 and GM2; and between the peel 

joints GM3 and GM4.

• Partially welded TM1, GM11A and TM11A have increased fatigue 

performance over the fully welded TM2, GM1 IB and TM1 IB, again on per 

unit weld length basis.

• T-Shaped joints performed better under axial loading (M5) than under 

bending and lateral loading (M8 and M6).

• Under variable amplitude block loading, high load cycles are the most 

damaging.

• Under variable amplitude conditions, TM11A has increased fatigue 

performance over GM1 and GM8.

• Mean stress affects high fatigue lives of TM1 IB and GM2

• The two main failure modes observed were toe and throat.

• For throat failure two modes of failure have been identified 1) root through 

the weld and root along the interface

11.9.2 Coupon FE Modelling

11.9.2.1 FE Modelling vs. Experimental Verification

• Using the longitudinal stresses down the centre line of the weld and ±10mm 

either side of the weld centre line for GM1 and GM2 show that the stresses 

are very close to each other. For GM11A the stresses slowly converge.

• FE stress predictions were not too sensitive to the types o f elements selected.

• FE under-predictions o f the stress for M il A coupon joint requires further 

investigation, which will be discussed in section 12.4.

11.9.2.2 Volvo and Battelle Structural Stress Results

• The highest stresses visible in the Volvo Method for both the weld throat and 

weld toe failures are found close to the weld start/stop.
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• Using the Battelle manual calculations the effect of the weld start/stops are 

corrected for and the FE stress just before the weld start/stop increases.

• Equivalent Structural Stress defined in the Battelle Method is higher than 

Structural Stress.

• Manual and Verity Equivalent Structural Stress are very close, with FLOW 

calculations being marginally higher.

• The weld thickness, placement and height show no effects on the S-N curve.

• FE results for stress distributions along the coupon weld line revealed that the 

structural stress values were lower at the edges o f those coupons having weld 

-toe failures. However, for those with weld throat failure, the structural stress 

at the edges were higher then that in the centre.

11.9.3 FUCA Component Fatigue Results

• For constant amplitude testing, failure occurred mainly through a notch in the 

weld start and propagating down the weld before travelling into the parent 

flange.

• Larger scatter occurred in ±2.5kN for crack initiation with low crack 

propagation rates. At ±4kN crack propagation rates were also low; this is not 

the case at ±7kN.

• Under variable amplitude block loading conditions, the high load cycles are 

the most damaging.

• Variable Amplitude SAE Bracket load-time history, the majority of the life- 

results fell between 150 -  200 block repeats o f the signal.

11.9.4 FUCA Life Predictions

•  Both Volvo and Battelle methodology is for toe failures; therefore this study 

has extended the methodology to incorporate throat failure. Toe Failure 

results prove that both methods are good for toe failure prediction.

• With three failure modes, 3 master curves exist. For each failure mode, a 

master curve exists regardless of joint configuration.

• For both the 1st stress (i.e. at the start o f the weld) and the max stress, the 

current Volvo standard for weld representation under-estimates the life o f the 

FUCA component.
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• For both 1st and max stress the triangular weld shape more reasonably 

predicts the life of the FUCA components.

•  Using the ‘Inside Weld Line’ location, the Battelle Structural Stress over- 

predicts the fatigue lives of the test data for both the full-length and cut- 

length welds.

• The ‘Weld Root’ location under-estimates slightly the fatigue lives o f the 

component.

• Overall, the “weld root” appeared to be a much better location from which 

structural stress should be calculated for the weld throat failure, if  Battelle 

Method is used.

• There is limited sensitivity in fatigue lives predicted due to the weld start 

locations -  full and cut length welds, with the full-length weld being more 

sensitive than the cut-length weld.

11.9.5 FUCA Life Predictions -  Variable Amplitude Loading

11.9.5.1 Variable Amplitude Block Loading

• For ±7kN Block Loading signal (R=-l), using mean stress correction over- 

predicts the average test data. Only full-length model using Volvo method 

predicts test data, Battelle method under-predicts the test data.

• For ±4kN Block Loading signal (R=-l) mean stress correction over-predicts 

the average test data along with the Volvo full-length model. Battelle method 

under-predicts the average test data.

• For Block loading signal of R=0.1 (maximum load 7kN) both the Volvo and 

Battelle Method along with mean stress correction under-predict the test data.

• Altering the damage constant D=1 to D=1.6 increases the number of block 

repeats o f life.

11.9.5.2 Variable Amplitude SAE Bracket Load-Time History

• Regardless of Damage constant value D=1 or D=1.6, both Volvo and Battelle 

methods for both models under-predict the average test data.

• Performing mean stress correction on this random signal does increase the 

predicted life, but this life still under-predicts the average test data.
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12. DISCUSSION

12.1 Constant Amplitude Coupon Testing for Data Generation

Figure 11.5 shows the comparison of GM1 and GM2 partially and fully welded 

single lap-shear coupons. The results show little difference in the weld performance, 

on a per unit weld-line length basis this indicates that the larger partial welds have 

similar crack initiator sites to the full welds. Whereas for TM1 and TM2 in figure 

11.6 the increase in fatigue performance o f TM1 could arise from the difference in 

weld failure locations o f throat and toe for TM1 whilst for TM2 it is predominately at 

the toe.

For the double lap-shear coupons, GM11A and GM11B the effect o f the full and 

partial welds are shown in figure 11.7. The difference in the fatigue performance has 

little to do with the failure location as they both fail at the weld toe but could be 

down to the difference in weld height. Whereas for TM11A and TM11B partial and 

full welded coupons as shown in figure 11.8 they both failed at the weld toes but the 

difference could arise from the weld quality.

Figure 11.9 shows the full and partially welded peel coupons GM3 and GM4. Both 

failed at the throat of the weld, although the load bearing capability o f partially 

welded GM3 on an actual per unit weld length basis is higher than that o f fully 

welded GM4.

Figure 12.1 shows the comparison between both suppliers TKA and GKN partially 

welded Ml and fully welded M2 results. For GM1, GM2 and TM1 the load-life 

curve shows that potentially one master curve can be used for throat failures. Whilst 

TM2 has a slightly lower fatigue lives for the majority o f toe failures but still could 

potentially use the same master curve as TM1, which covers all types o f failures.
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Figure 12.1: C om p ariso n  o f  T K A -T allen t  and G K N  Load-L ife  Data M l  and M2 

Joints  Results, R = 0 .1

Figures 12.2 -  12.3 show  the results for all w eld  toe failures and w eld  throat failures 

respectively  for both suppliers. F igure 12.2 show s reasonable  load-life results for all 

the weld toe failures although  T M 2, a single lap-shear geom etry , has a low er load 

range than all doub le  lap-shear geom etr ies  o f  M l 1A and M l IB. This is due to the 

doub le  lap-shear jo in ts  being stiffer.
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Figure 12.2: C om parison  o f  L oad-L ife  Data for All W eld  T oe Failures, R=0.1
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Figure 12.3 show s that the lap-shear jo in ts  are an order o f  m agn itude  h igher  in load 

range on a per unit w eld  length basis than the peel jo in ts .  All the lap-shear and peel 

jo in ts  have very  good  results on a per unit w eld  length basis.
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Figure 12.3: C om p ariso n  o f  Load-Life Data for All W eld  Throat Failures, R=0.1

Figure 11.10 show s the d iffe rences  betw een  the loading cond itions  tensile  fatigue to 

lateral and bend ing  fatigue by the m agnitude  d iffe rence in the results for a s im ple T- 

shaped coupon. G M 5  has better fatigue perfo rm ance  than both G M 6  and  G M 8. G M 6  

and G M 8  have s im ilar  fatigue lives.

12.1.1 Comparison of Single and Double Lap-Shear Welds

Figures 12.4 -  12.7 show  the effect o f  s ingle and  doub le  w elded  geom etr ies .  The 

effect o f  double  the am o u n t o f  w elds show s a h igher load bearing  capab ility  per 

actual w eld  length for G M 1 1 A  w hen  com pared  to the single w eld  GM 1 w hich  is 

show n below  in figure 12.4. This  d ifference could  arise from  the d iffe ring  failure 

m odes with GM1 failing at the w eld  throat and G M 1 1 A  fails at the w eld  toe, and  due 

to a single w eld  be ing  less s t i f f  therefore m ore  bend ing  occurs.
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Figure 12.4: Load-Life D ata for G M 1 and  GM1 1A Joints -  Final Failure, R = 0 .1

The differences  be tw een  fully w elded  single and doub le  lap-shear coupons  are show n 

in figure 12.5. The effect o f  a s ingle full w eld  (G M 2) does decrease  the fatigue 

perfo rm ance  on a per w eld  length basis m ean ing  that doub ling  the length o f  weld 

increases the fatigue perfo rm ance, a l though the failure m odes  w ere different -  G M 2 

fails th rough the weld  throat and toe whilst G M  11B fails at the w eld  toe.
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Figure 12.5: Load-Life Data for G M 2 and G M  11 B Joints  -  Final Failure, R - 0 . 1

187



www.manaraa.com

T h e  differences  be tw een  T K A -T a l le n t  M l and M 1 1 A  are show n  in figure 12.6. 

T M 1 1 A  has a better load bearing  capability  o ver  T M 1. The effect o f  doub ling  the 

w eid  length does increase the fatigue perfo rm ance  o f  the w eld  by increasing  the load 

bearing  capability , but it also increases the num ber o f  initiation sites for failure to 

o ccu r  at the w eld  toe.
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Figure 12.6: Load-Life Data for TM1 and T M 1 1A Joints  -  Final Failure, R=0.1

T M  11B show s im proved  fatigue perfo rm ance  on an actual per w eld  length basis over 

T M 2  show n in figure 12.7. D oub ling  the w eld  length does increase the load bearing 

capab ility  o f  the weld  but increases the initiation sites available.
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Figure 12.7: Load-Life Data for T M 2 and T M  11 B Joints -  Final Failure, R = 0 .1

D ouble w elded  coupons  show  that they are m ore  efficient in d is tr ibu ting  the applied 

load though the coupon  than single welds. D oubling  the w eld  length reduces  the 

bend ing  com ponen t  in the single weld, w hich results in the failure m o d e  change.

12.1.2 Comparison of Coupon Suppliers

E xam in ing  the fatigue test results from coupon  jo in ts  fabricated  by  G K N  and T K A - 

Tallent, no ticeable  d iffe rences  w ere observed , as show n  in figures 12.8 -  12.11. This 

im plies that d ifferent w e ld in g  processes  and  w elders  affect jo in t  fatigue.

For single lap-shear coupons  on a per  unit w eld  length basis for both  the full and 

partial welds, both  suppliers  have very  s im ilar fatigue lives and  this is show n  in 

figures 12.8 -  12.9.
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Figure 12.8: M l Final Failure, R=0.1

T M 2 has low er fatigue lives than G M 2 this is sh o w n  in figure 12.9. This  cou ld  be 

due to the different m odes  o f  failure betw een  throat w eld  failures for G M 2  w hilst 

T M 2 failed at the weld toe.
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Figure 12.9: M2 Final Failure, R=0.1

For double  lap-shear partia lly  w elded  coupons  again  G K N  coupons  sh o w  better 

fatigue perfo rm ance  lives on a per unit w eld  length basis to T K A  Tallen t coupons ,  

this is show n  in figure 12.10.
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Figure 12.10: M l  1A Final Failure, R = 0 .1

For fully w e lded  double  lap-shear coupons, the d ifferences be tw een  m anufac tu res  are 

not as noticeable  as the partia lly w e lded  coupons. F igure 12.11 show s that GM1 IB 

has better fatigue perfo rm ance  than TM1 IB. H ow ever, there is a s ign ifican t overlap  

in scatter bands.
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Figure 12.11: M 11B Final Failure, R = 0 .1

Overall from the results show n in the above figures, weld fabrication does affect the 

fatigue lives o f  the coupon  jo in ts .
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12.1.3 Comparison of Peel and Lap Geometries

D ifferences be tw een  lap and peel geom etr ies  are show n in figures 12.12 -  12.13 on a 

per unit w e ld  length basis. G M  1 and G M 3 show  sim ilar  fatigue scatter perfo rm ance 

but the load levels are ten t im es h igher for the sam e life as show n in figure 12.12.
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Figure 12.12: Load-Life  Data for GM1 and G M 3 J o i n t s - F i n a l  Failure, R = 0 .1

W ith  full w elds  there is a no ticeable  d ifference in the fatigue perfo rm ance  o f  lap- 

shear and peel coupons  as show n  in figure 12.13. G M 2  has fatigue lives ten times 

h igher than G M 4.
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Figure 12.13: Load-L ife  Data for G M 2 and G M 4  Joints -  Final Failure, R = 0 .1

12.1.4 Mean Stress Effects

In general m ost engineers  tend to ignore the effects o f  m ean  stress w hen  ca lcu la ting  

weld  fatigue for 3 reasons: 1) In com par ison  to load o r stress range. 2) M ean  stress is 

secondary , in the past research into the effects o f  m ean stress on w eld  fatigue show s 

them  to be rela tively  small as it is believed that s ignificantly  h igher residual stress is 

found in the welds. 3) Lack o f  experim ental  data on how  to correct for m ean  stress is 

ava ilab le  and  for these reasons, m ean  stress effects fail to be accounted  for.

In this s tudy the effects o f  m ean stress in weld  fatigue have been  investigated. 

Figures 11.11 and  11.12 show s that m ean  stress does have an effect on  the fatigue 

lives o f  coupons, and  therefore the effect o f  this stress will need to be ca lcu la ted  and 

correc ted  for.

Figures 11.11 -  11.12 show  that for short lives (high loads) under s train-control 

fatigue, plastic strain  will rem ove  the m ean  stress effect by deform ation ,  i.e. the 

residual stress is rem oved  from  the coupon. W hereas  at long lives ( low  loads) the 

coupon  is under stress control fatigue and under these conditions  the effects  o f  m ean  

stress is m uch  m ore  important.
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Figure 12.14 show s that w hen  co m p ar in g  the effects o f  m ean  stress aga inst m ax load 

the severity  o f  the loading is show n very  clearly , unlike in figure 11.11. This show s 

that range as well as m ean  contributes  to fatigue.
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Figure 12.14: M ax im um  Load-L ife  Data for M ean Stress Effects o f T M l  IB

12.2 Variable Amplitude Loading

12.2.1 Variable Amplitude Block Loading

Figures 12.15 -  12.16 show  the com parison  be tw een  the constan t am plitude  loading 

and the block loading at each o f  the load levels. At the first load level as show n  in 

figure 12.15, the b lock loading result show s that the m ost dam ag in g  cycles  are the 

first load level o f  each b lock with the lower load level o f  the b lock caus ing  a small 

am o u n t  o f  dam age.

F igure 12.15 show s the com p ar iso n  o f  repeats  o f  1000 cycles for constan t am plitude  

loading to block loading. T he b lock loading result for the first b lock FI is h igher as 

for every  b lock  o f  1000 cycles the constan t am plitude  has 1000 cycles at h igh load 

levels, w hils t the b lock loading FI is an order o f  m agn itude  h igher due to only  

hav ing  100 cycles o f  every  1000 cycles at the high load.
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Figure 12.16, show s that the low er load o f  each block has som e d am ag in g  effect, 

w hich  has m ore effect at lower load levels.
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Figure 12.16: Block Loading  vs. C onstan t A m pli tude  L oading  at 2 nd Load Level, 

R=0.1
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In figure 12.17 using the constan t am plitude  results, the variable am plitude results

can be pred ic ted  using M in er’s Rule. M iner's  Rule using a dam age  constan t D=1

gives a good p red ic tion  o f  life.
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Figure 12.17: M iner 's  Rule

12.2.2 Variable Amplitude SAE Bracket Load-Time History

Figures 12.18 12.20 estim ate  the fatigue lives o f  G M 1, T M 1 1 A  and  G M 8 using the

M in e r’s Rule ana lyses  o f  figure 11.14. F igure 12.18 show s ca lcu la ting  the d am ag e  

and  estim ating  the fatigue life using M iner 's  Rule overes tim ates  the life o f  GM1 

regard less  o f  using  a d am ag e  constan t o f  1 o r  0.7.

U sing  the G o o d m an  m ean  stress correc tion  to es tim ate the fatigue life w ith  M 2 

initially being  0.1, has a s im ilar life es tim ation as D=0.7. A lte ring  M 2 to 0.5 

accura te ly  pred ic ts  the variab le  am plitude results at high load levels, but at low er 

loads, it over-es tim ates  the life. U sing  M iner 's  Rule for es tim ating  fatigue lives o f  

w eld  throat failures becom es m ore  difficult.
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Figure ! 2.18: M iner's  Rule for G M  1

Figure 12.19 show s that for T M 1 1 A  the M iner's  Rule over-estim ates  the fatigue life 

o f  the coupon  w hen  using a d am ag e  constant D = l .  U sing  D =0.7 and the G oodm an  

correc tion  m ethod  the fatigue life es tim ation accura te ly  predic ts  the fatigue lives for 

w eld  toe failures.
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Figure 12.19: M iner 's  Rule for TM  11A

For G M 8  show n  in figure 12.20, using a d am ag e  constan t o f  D=1 and  D =0.7  and 

G o o d m an  correc tion  M2=0.1 all over-estim ates  the fatigue lives o f  the coupon.
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A ltering  the M 2 to 0.5 accura te ly  predic ts  the G M 8  variab le  am plitude  results; this 

show s that m ean  stress correc tion  is required.
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Figure 12.20: M iner 's  Rule for G M 8

From figure 12.18 the effects from m ean  stress are clearly  v isible in the M iner 's  rule 

calculations. For ana lys ing  the variable am plitude  G M  1 by using  the m ean  stress 

results show n in figure 11.11 and taking into accoun t the weld  length correc tion  is 

show n in figure 12.21.
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Figure 12.21: Load-L ife  Data for W eld  Length C orrec ted  GM1 and G M 2

1.7774x

1.7434X

10000 100000 

Cycles, Nf

1000000 10000000

198



www.manaraa.com

Noticeable from figure 12.21 is that both GM1 and  G M 2 at R=0.1 have very  similar 

fatigue perform ance. Therefore  w hen  testing  G M 2  at R=0.5, GM1 will have very 

sim ilar results. So correc ting  the G M 2 R=0.5 equation  o f  the curve w ith  the average 

w eld  length o f  GM1 will be very  sim ilar to the results seen i f  GM1 w as tested.

Figure 12.22 show s that from using figure 11.11, w hich  has no w e ld  length 

correction, M iner 's  rule over-pred ic ts  the life for GM1 variable  am pli tude  loading. 

U sing the w eld  length correc tion  factor reduces  the over-pred ic tion  from  Miner's 

Rule by betw een  100 and 1000 cycles dep en d in g  on the load.
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Figure 12.22: M iner's  Rule for M ean  Stress C orrec t ion  o f  GM1

U sing  the m ean  stress results for T M 1 1 B  show n  in figure 11.12 to ana lyse  the 

T M 1 1 A  variab le  am plitude  results is show n  below  in figure 12.23. T he  R-Ratio  

chosen  was R =0.5  to ana lyse  any  o f  the variab le  am pli tude  signal, the m ean  stress 

effect for an R ratio h igher than 0.5 is ca lcu la ted  as d iscussed  in section 10.9.2.2.

T he  results in figure 12.23 show  that correc ting  the load-tim e history for m ean  stress 

still over es tim ates  the coupon  fatigue lives. This  m eans  that w hen  using the T M 1 1B 

R=0.5 data to predic t the effect o f  m ean  stress on TM1 1A, the d iffe rence  in weld 

length m ust be accoun ted  for.
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Figure 12.23: M iner 's  Rule for M ean S tress C orrec tion  o f T M l  1A

C orrec t ing  for w eld  length for both T M 1 1 A  and  TM1 IB R = 0 .1 and R =0.5  test data 

is show n in figure 12.24.

1

o>

y= 16 752*

y= 2.9016x

a.
CD

l.7223x

♦  R=0 1 A R=0.5 x TM11A R=0.1

0.1
10000 100000 1000000 10000000

Cycles, Nf

Figure 12.24: Load-L ife  Data for T M 11A and T M 11B C orrec ted  for W eld  Length

Both TM1 1A and  TM1 IB  R=0.1 curves have not co llapsed  together after correc ting  

for the w eld  length, then using T M 1 1 B  R -0 .5  for T M 1 1 A  will not be possible. 

Therefore  the pred ic ted  T M 1 1A R=0.5 curve m ust be ca lcu la ted  from the diffe rences 

show n in T M 11B . Section 10.9.3.1 describes  how TM1 1A R=0.5 is calculated . 

F igure 12.25 show s the es tim ated  T M 1 1 A  R=0.5 curve.
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Figure 12.25: Estim ated  Load-L ife  C urve  for T M  1 1A R=0.5

From this the variable  am pli tude  T M 1 1 A  results can be reanalysed  for m ean  stress 

effects. T he R -R atio  chosen  w as R^O.5 to ana lyse  any  o f  the variab le  am plitude 

signal, the m ean  stress effect for an R ratio h igher than 0.5 is ca lcu la ted  as d iscussed  

in section 10.9.2.2. Figure 12.26 show s the reanalysed  m ean  stress effect with weld 

length correction. W eld  length correc tion  show s that the M iner 's  rule now  m ore 

accura te ly  predic ts  the T M 1 1 A  variable am pli tude  data.
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Figure 12.26: M iner 's  Rule for M ean Stress C orrec tion  o f  T M 1 1A

TM11A

Mean Stress Effect R=0.5 Weld Length Correction
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12.2.2.1 Volvo Goodman Mean Stress Miner’s Rule

From  figures 12.18 -  12.20 the values used to ca lcu late  the M iner's  Rule for m ean  

stress w as  ca lcu la ted  based on the suggested  values  from  V olvo 's  work. From the 

m ean  stress testing  o f  TM1 IB and  G M 2 at R=0.5, and using  the R=0.1 data  as well,  

the actual M t va lues  can be ca lcu la ted  for this work.

This w as carried  out on the load-life data show n in figures 12.21 and 12.24, w h ich  

have been  correc ted  for w eld  length d ifferences. C a lcu la ting  M 2 is desc ribed  in 

Eq.33 in section 10.9.3.2.

F igure 12.27 show s how  M 2 is affected by life. T he M 2 value  based on the G o o d m an  

d iagram  show n  in section  10.9.3 is sensitive to life. At low er loads (low  cycles),  the 

slope is low er w hereas  at h igher cycles M 2 value is m uch  h igher i.e. a s teeper slope.

0.6

0.4
in
i>

<o
>
C M5

0.2

1.E+08 1.E+091.E+04 1 E+05 1.E+06 1.E+07
Life, Nf

Figure 12.27: M 2 vs. Life for G M 2

Figure 12.28 show s the sensitiv ity  to life o f  M 2 for TM1 IB. At low er loads the M 2 

value is low er than at h igher loads.
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Figure ! 2.28: M 2 vs. Life for TM  11B

From both figures 12.27 12.28 it is no ticeable  that the slope M 2 is sensitive to life.

Therefore a range o f  M? values is possib le  for the d iffe rence be tw een  R = 0 .1 and 

R=0.5 depend ing  on what life is selected. This  is show n in figure 12.29 -  12.30 for 

G M 2 and TM 11B respectively.

Figure 12.29 shows that at low lives the slope M 2 is s teep and  it g radually  gets 

steeper as the lives get longer.
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Figure 12.29: Load A m plitude  vs. Load M ean for G M 2
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Figure 12.30 show s that at low lives, the M 2 value  for the slope is v irtually  horizontal 

i.e. they are v irtually  the sam e value. At h igher fatigue lives, the M 2 va lues  (slope) 

becom e m u ch  steeper due to the effect o f  m ean  stress at h igher lives.
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0.14
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Figure 12.30: Load A m plitude  vs. Load M ean for TM1 IB

Both figures 12.29 and 12.30 show  a very  s im ilar  trend to the m etals  H aigh  d iagram  

show n in figure 2.4. This show s that ca lcu la ting  the effects o f  m ean  stress is very 

important. U sing  the G o o d m an  m ean stress correc tion  factor requires the testing for 

all geom etr ies  at d ifferent R-Ratios to es tab lish  the actual M 2 va lues  for the test.

To ensure the correct m ean  stress correc tion  factor for w eld  fatigue w as used, further 

w ork  is required in using the o ther m ean  stress equations such as G erber,  M orrow  

etc. as descr ibed  in section 2.5.1.1.

12.3 Coupon Testing Failure Modes and Locations

From  ana lys ing  all the coupons  tested under both constan t and variab le  am plitude  

loading, they  all fall into the traditional ca tegories  o f  throat failure and  toe failure. 

O n  closer inspection though there are tw o m odes  o f  throat failure w ith in  the coupon  

spec im ens,  especia lly  the lap-shear and peel co u p o n  geom etr ies  fail under  the vague 

term  “ throat fa ilure” .
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As show n in figures 11.16 and  11.17 o f  the single lap-shear jo in ts ,  the fatigue cracks 

propagate  from  the w eld  root th rough the in terface o f  the sheet and the w eld  nugget 

edge. In the peel jo in ts  show n  in figure 11.19, the m ethod  o f  throat failure also 

started from  the w eld  root but p ropagated  though  the w eld  throat.

From  this ana lysis  there are now  three m ain  locations o f  failure as show n  below  in 

figure 12.31.

Interface (Throat) Failure

Throat Failure

Toe Failure

Figure 12.31: Failure Locations

• Interface Failure -  fa ilure from weld  root to the weld  nugget paren t material 

sheet failure.

•  Throat Failure -  failure p ropagating  from the w eld  root th rough  the weld 

throat.

•  Toe Failure -  failure o f  the parent materia l sheet around  the w eld  toe.

12.4 Coupon FE Modelling

12.4.1 FE Modelling With Experimental Verification

T he purpose  o f  such m o d e ll in g -m easu rem en t co m p ar iso n  was to gain conf idence  in 

the coupon-jo in t  FE m odels ,  w hich will be used for “ structural s tress” eva lua tions in 

w eld  fatigue analysis  techn ique  developm ent.

12.4.1.1 Effects of Weld Representation in FE Models

Overall,  it appears  that little d iffe rences  exist am o n g  stress results from  various FE 

weld  representa tions. In addition, figure 11.39, show s that the solid m odel predicts 

very  sim ilar  stress results to those from the shell m odel. F igures 1 1.41 -  11.42 also 

indicate that no s ign ifican t d iffe rences  be tw een  the m ax im u m  principal stress and  the 

stress in “y ” d irec tion  o y stress. Therefore, in the investigations o f  all the factors on 

the predic ted  FE stress values, only  the four-noded  quadrila te ral shell (Q uad4) 

elem ents  w ere used in all subsequen t FE analyses.
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Figure 11.40 -  11.42 show the stress distribution along three straight longitudinal 

paths, 10mm apart, across the coupon width at distances from the weld. Ml (figure 

11.40) shows the closest correlation between the three stress distributions further 

from the weld. At the distance o f 9mm from the weld, the weld profile acts as a stress 

raiser causing the 10mm left of centre line to have higher stress values recorded.

Figure 11.41 (M2) shows the same trend that further from the weld the three stress 

distributions are very close. At 11mm from the weld, the stress value recorded for the 

centre line is slightly higher than the others. This could be due to the larger size of 

the weld profile still influencing the stress.

Figure 11.42 (Ml 1 A) shows that the three stress distributions do not converge until 

the furthest possible distance from the weld. The centre stress distribution has the 

highest stress and the slowest to converge to similar stresses, whilst the left stress 

distribution converges faster due to the large size of the weld profile still influencing 

the stress.

12.4.1.2 FE vs. Strain Gauges

FE predictions and their comparisons with the strain-gauge results shown in figures 

11.43 -  11.45 indicate that at low loads predicted and measured stress is very close, 

and the predicted FE stress values under-predict the actual stress. At higher loads, the 

FE-derived stress significantly under-predicts the measured stress by approximately 

20MPa.

12.4.1.3 FE vs. Photoelasticity

The results from comparing the three methods of predicting stress in all three 

coupons are shown in figures 11.46 -  11.48. Ml and M2 FE stress predictions are 

marginally lower but they are still within the scatter o f the photoelasticity results. 

M il A predicted results as shown in figure 11.48 produced a significant under­

prediction of the coupon stress when compared to both the photoelastic and strain 

gauging results. This could arise from how the coupon was modelled.

To help explain the differences between the results from FE and Photoelasticity 

results, the effect o f element size on FE stress results has been carried out. Stress
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distributions from FE m odels  o f  tw o e lem ent sizes are show n in figures 12.32 

12.33 and, in the area o f  com par ison ,  d is tance > 1 0 m m  from  the w eld , bo th  figures 

show  similar stress distribution patterns.

Figure 12.32: Coarse  M esh Size on M l 1A

Figure 12.33: Finer M esh Size on M l 1A

T he effect o f  m esh sensitivity  w as also considered  in this investigation to ensure  that 

the accuracy  o f  the predic tive technique is not sensitive to the m esh  size. M esh  size
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o f 3mm for the coarse mesh and 1.5mm for the fine mesh was used in the study. The 

results o f the mesh sensitivity is shown in figures 12.32 -  12.33, and they indicate 

that there is a 10% increase in peak stress at the weld toe, as the element size gets 

halved indicating that the accuracy is questionable for stress in the immediate 

proximity o f the weld.

This further supports the view that weld fatigue analysis based on FE stress results 

are not recommended. A different approach o f weld durability assessment is needed, 

which will be based on “structural stress”, derived post-FE from loads experienced 

by the weld. The stress contour maps also show that there is minimal difference in 

the stress in the area o f interest away from the weld. Therefore, changing element 

size has no effect on the stress results.

The current models used to produce the results have been built with perfect 

alignment as shown in figure 12.34. The actual misalignment was not included in 

these models and this could influence the difference between the FE model 

predictions and the photoelastic measurements.

1-2-3-4-5-6

1-3-4-5-6

Figure 12.34: Uniform Distribution of Models

12.4.1.4 Types of Load Misalignment

Load misalignment could arise from the fatigue test machine grips being out o f line 

and causing these effects:

o Translational shown in figure 12.35 

o Rotational shown in figure 12.36 

o Combination of Translation and Rotational

Out-of-straightness o f the coupons, e.g. bent samples due to welding distortion, is 

another possible manufacturing defect that were not included in the initial FE 

models. The final possibility is a combination o f bent coupons and misaligned grips. 

Together, they may cause sufficient variability in the actual stress levels in the
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w elded  coupon  jo in ts  to cause  such a lack o f  corre la tion  found in figure 11.48. 

T herefore, these effects need to be investigated.

(

/

/

)

17777

Figure 12.35: T ransla tional M isalignm ent

7 7 / / / /

/ / / / /  z Z / z y

Figure 12.36: Rotational M isalignm ent

c) d)

T h e  effects o f  the m isa lignm ents  are not ev iden t by a s ingle strain gauge or th rough  

pho toelastic ity  m easurem ents .  H owever, they can be estim ated  from FE analyses  by 

in troducing  various types  and levels o f  load m isa l ignm en ts  into an FE m odel and, 

then, quan tify ing  the varia tions  in the pred ic ted  stress d istributions.

FE results o f  var ious m isa lignm ents  are show n  in figure 12.37. A rotational 

m isa l ignm en t in one o f  the steel grips does influence the pred ic ted  stress, but it 

increases the stress values  as the d is tance from the weld  increases. This  type o f  

m isa lignm ent is unlikely  to be the reason for the decrease  in the pred ic ted  stress 

show n  in the M 11A results.
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Figure 12.37: T he  Effects o f  Rotational M isa l ignm en t as S how n  in Figure 12.36a

6 k N  c e n t r e  line
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6 k N  F E  ±34° R a t  to p  & b o tto m

The effect o f  rotational m isa lignm ent in bo th  grips is show n in figure 12.38, the 

results show  this is the type o f  m isa l ig n m en t possib ly  in the coupons. V arious 

m odels  w ere built, a ltering  the am oun t o f  rotation , w hich  in turn increased  the 

predic ted  FE stress levels s ignificantly , w h ich  strongly  suggested  that this type o f  

m isa l ignm en t m ight have been present in the grips.

Figure 12.38: T he  Effects o f  Rotational M isa l ignm en t as S how n in Figure 12.36b
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12.4.1.5 Weld Irregularities

From photographing and measuring each o f the welded coupons prior to testing it is 

noticeable that each weld is different in location and size. The effect of this has only 

been partially accounted for in the basic FE models by altering the weld size across 

the geometry but not through moving the locations of the weld.

12.4.1.6 Photoelasticity Study Conclusions

Various methods of FE modelling a MIG/MAG seam weld in coupon test specimens 

have been investigated and results indicate that either increasing the shell element 

thickness representing the weld or having a back plate (triangular weld 

representation) to the weld affects little in the finite element stress values predicted. 

Shell-element FE models showed comparable predicted stress values to those 

obtained from FE analyses with the weld being represented by 3-D solid elements in 

the models.

Results show that predicted stress tends to under-predict strain gauged results only 

slightly at low load levels, but at high load levels the predicted stress is much lower.

Overall, the results show that for single-weld line lap-shear coupons (Ml and M2), 

the FE predicted stress is within the photoelasticity measurement scatter. For the 

double-weld line lap-shear coupons (M ilA ), the finite element results are 

significantly lower than the photoelasticity and strain gauge measurements.

The effects of finite element mesh sizes on the predicted FE stress were investigated, 

with the results indicating that the element mesh size has little effect on the 

prediction of the stress.

Overall the control of angular alignment is very important in testing and critical to 

the subsequent accuracy of the FE stress results.

12.4.2 Volvo (nCode) Structural Stress

Converting load-life curves to S-N curves is necessary to predict the fatigue life of 

FUCA Components. From the stresses extracted from the most damaged nodes at the 

weld toe (shown in Table 11.4) the stress-life curves can be produced, these are
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show n in figures 12.39 and 12.41 for all w eld  toe failures and all weld  throat failures 

respectively. For com par ison  o f  coupon  su p p lie rs ’ b reakdow n  o f  all the w eld  toe and 

throat failures see A ppend ix  8.

C o m b in in g  all the w eld  toe failures to p roduce  one  s t ress - l i fe  m aster  curve is show n 

below  in figure 12.39. The diffe rence be tw een  the tw o suppliers  is still noticeable 

with G K N  hav ing  better fatigue lives that T K A -T allen t .  F igure 12.39 show s that for 

T K A -T allen t  jo in ts  T M 1 1 A , T M 1 1 B  and T M 2  there is good  convergence  o f  the 

results. In this case the geom etry  does not influence the results. W hen  com paring  the 

convers ion  o f  G K N  G M 1 1 A  and GM1 IB cou p o n  jo in ts ,  the stress-life curve show s 

reasonab le  convergence .  Overall it is no ticeable  that for the entire w eld  toe failures 

one m aster  curve  could  poten tia lly  be used.

1 0 0 0

1 0 0

♦  G M 1 1 A B G M 1 1 B  T M 11A  X T M 1 1 B  X T M 2

10

1 0 0 0 0 0 0 01 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

C y c le s ,  Nf

Figure 12.39: S tre ss -L ife  M aster C urve  C onvers ion  for All W eld  Toe Failures

A nalys ing  the S-N curve as show n in figure 12.39 described  in section 10.7.1, to 

understand  the certain ties o f  survival o f  a coupon  statistical analysis  occurs. F igure 

12.40 show s the certain ties o f  survival o f  the data at 9 9 .87%  and 0 .13%  o f  the S -N  

data for all the w eld  toe failures. C onside ring  all w eld  toe failures S-N data  the 

survival bands  are subsequen tly  m uch  larger due  to m ore scatter in the results.
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Figure 12.40: Statistical A nalysis  o f  All W eld  T oe  Failures

Figure 12.41 show s the S tress-L ife  C urve  for all w eld  throat failures us ing  the stress 

located on the undernea th  side o f  the w eld  toe e lem ents  above  the w eld  on  S ide B as 

show n  in figure 1 1.34. This graph show s that the throat failures m ust still be split 

into two S-N curves, as the pred ic ted  stress has not co llapsed  the peel and  lap-shear 

results  together, i.e. Throa t failure vs. Interface throat failure.
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Figure 12.41: S tre ss -L ife  M aster C urve  C onvers ion  for All W eld  Throat Failures
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Figure 12.42 show s the certain ties  o f  survival at 9 9 .87%  and 0 .13%  o f  the S -N  data  

for all the w e ld  throat failures. N oticeab le  from  this graph is that the effect o f  the lap- 

shear (in terface  throat failure) and the peel (th roa t failure) S-N  curves not co llaps ing  

together  causes  the survival bands to be very  large. F rom  this it is re co m m en d ed  that 

bo th  the lap-shear and peel S-N curves have individual S-N curves  and  are not 

co m b in ed  in all w eld  throat failures.

Figure 12.42 ind icated  the im portance  for the third failure m ode: in terface failure to 

be identified  and  separated  from the throat failures and  c lassed as a separa te  m as te r  

S-N curve.

1 0 0 0

1 0 0

♦  D a ta  P o in ts  9 9  8 7 %  S u r v iv a l 0  13%  Survival 50%  S u rv iva l

10

1 0 0 0 0 0 0 0 01 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

C y c le s ,  N f

Figure 12.42: Statistical A nalysis  o f  All W eld  Throa t Failures

The s tre ss - l i fe  curve for G M 1, G M 2 and TM1 lap-shear jo in ts  -  in terface fa ilure is 

show n  in figure 12.43. The test data for G M 1, G M 2 and TM  1 show ed  very  good 

convergence  but the subsequen t s t ress - l i fe  conve rgence  p roduced  reasonab le  

co nvergence  for interface failures. TM1 still has s lightly  h igher fatigue lives than 

G M 1 and G M 2.
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Figure 12.43: S tress-L ife  M aster  C urve C onvers ion  for All W eld  Interface Failures

Figure 12.44 show s the certain ties o f  survival at 9 9 .87%  and 0 .13%  o f  the S - N  data 

for all interface throat failures (G M 1, G M 2 and T M 1). N oticeable  from this graph is 

that by rem oving  the peel (throat failures) S-N curve causes  the survival bands to be 

re la tively  narrow.
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Figure 12.44: Statistical A na lysis  o f  All W eld  Interface Throat Failures

The stress life curve for the peel geom etr ies  G M 3 and G M 4 -  throat failure, is 

show n below in figure 12.45. T he test data for throat failures show s good
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convergence, w hereas  w hen converted  into a s tress - l i fe  curve the results show  

reasonab le  convergence.
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Figure 12.45: S tress -L ife  M aster  C urve C o nvers ion  for All W eld  Throa t Failures

F igure 12.46 show s the certain ties o f  survival at 99 .87%  and  0 .1 3 %  o f  the S -N  data 

for all throat failures. N oticeab le  from this graph  is that w ith the reasonab le  am ount 

o f  sca tte r in the results, the survival bands  are reasonab ly  wide, though  the survival 

bands bind all data points.
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Figure 12.46: Statistical A nalysis  o f  All W eld  Throat Failures

Tab le  12.1 show s all the m aster  S-N curve param eters  generated  from this study.
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Table 12.1: Volvo Master S-N Curve Parameters

A a  -  aNj
Volvo Methoc Structural Stress

Failure Location Survival a b SE log(Nf)

Toe Failure
50% 7151.67 -0.2485

0.2664
99.87% 4526.7 -0.2485

Interlace Failure
50% 3189.15 -0.1583

0.2458
99.87% 2437.59 -0.1583

Throat Failure
50% 3034.71 -0.2205

0.2599
99.87% 2042.64 -0.2205

12.4.2.1 Volvo (nCode) Structural Stress -  Sensitivity Study

A small sensitivity study was carried out on the TM1 results to understand if the 

weld location, weld height and thickness o f side B affected the FE results. The 

extremes of geometry used came from the measured coupon specimens used in the 

constant amplitude testing. Table 12.2 shows the contents of the study.

Table 12.2: Sensitivity Study Contents

TM1 Sensitivity Analysis Changes Stress MPa
TM1 using averages N/A 51.867
Modified weld thickness 6mm 51.92
Weld Height - High Left:5.67, Right: 10.27 52.709
Weld Height - Low Left:7.05, Right:7.74 53.039
Weld Position - High Left: 11.56, Right:5.27 53.682
Weld Position - Low Left: 11, Right: 4 52.383
Side B thickness - High 3.02mm 50.728
Side B thickness - low 2.95mm 52.581
Side A & B thickness - high Side A:2.99, B:3.02 50.682
Side A & B thickness - low Side A:2.94, B:2.95 52.791

Figure 12.47 shows the effect of the sensitivity study against the other throat failure 

lap-shear geometries GM1 and GM2. Changing the weld height and position along 

with the thickness has little effect on changing the predicted FE stress. Therefore 

using just the average coupon geometries is good enough for the collapsing o f the 

load-life data.
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Figure 12.47: Sensit iv ity  S tudy  on TM

12.4.3 Battelle Method

12.4.3.1 Battelle Structural Stress

C onvert ing  load-life curves to S-N curves using the Battelle Structural Stress M ethod 

w as co m p le ted  using  the three different m ethods; M anual C alculation, FL O W  and 

Verity. T he  S-N curves  are used to estim ate the fatigue life o f  F U C A  C om ponen ts .  

F rom  the stresses ex tracted  from  the m ost d am aged  nodes at the weld  toe (show n in 

Tab le  11.5) the s tre ss - l i fe  curves can be p ro d u ced  for the m anual m ethod , these are 

show n  in figures 12.48 and 12.50 for all w eld  toe failures and  all w eld  throat failures 

respectively . For co m p ar iso n  o f  coupon  su p p lie rs ’ b reakdow n  o f  all the w eld  toe and 

throat failures see A p p en d ix  9.

C o m b in in g  all the w e ld  toe failures to p roduce  one s t ress - l i fe  m aster  curve is show n 

below  in figure 12.48. T he  diffe rence be tw een  the tw o suppliers  is still noticeable 

with G K N  hav in g  better fatigue lives that T K A -T allen t.  F igure 12.48 show s that for 

T K A -T a llen t  jo in ts  T M 1 1 A , T M 1 1 B  and  T M 2  there is good  convergence  o f  the 

results. In this case the geom etry  does  not influence the results. W hen com par ing  the 

convers ion  o f  G K N  G M 1 1 A  and  GM1 IB coupon  jo in ts ,  the stress-life curve show s 

reasonab le  convergence .  Overall it is no ticeable that for the entire w eld  toe failures 

one m aster  curve  cou ld  poten tia lly  be used.
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Figure 12.48: S tre ss -L ife  M aster  C urve C onvers ion  for All W eld  T oe Failures

A na lys ing  the S-N curve as show n in figure 12.48 described  in sec tion  10.7.1, to 

unders tand  the certain ties o f  survival o f  a coupon , statistical analysis  occurs. F igure 

12.49 show s the certainties o f  survival at 99 .8 7 %  and 0 .13%  o f  the S -N  data  for all 

the w eld  toe failures. C onside ring  all w eld  toe failures S-N data the survival bands 

are subsequen tly  m uch  larger due to m ore scatter in the results
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Figure 12.49: Statistical A nalysis  o f  All W eld  T oe  Failures

Figure 12.50 show s the Stress-L ife  C urve  for all weld  throat failures us ing  the stress 

located  on the underneath  side o f  the weld toe e lem ents  above the w eld  on  Side B as
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show n  in figure 11.34. This graph show s that the throat failures m ust still be split 

into two S-N curves, as the pred ic ted  stress has not co llapsed  the peel (throat) and 

lap-shear (in terface) results together.
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Figure 12.50: S tre ss -L ife  M aste r  C urve  C onvers ion  for All W eld  Throat Failures

U sing  one S-N curve to represent all w eld  throat failures g ives very  large survival 

bands when ana lysed  as show n  in figure 12.51, this also show s that the lap-shear 

geom etr ies  and the peel geom etr ies  require  separate  S-N curves.
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Figure 12.5 l: Statistical A nalysis  o f  All W eld  Throa t Failures
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T he s tress- l ife  curve for interface failures is show n  in figure 12.52. T he test data  for 

in terface failure show ed  very  good co nvergence  but the subsequen t s t ress - l i fe  

convergence  produced  reasonable  convergence  for in terface failure. T M  1 still has 

s lightly  h igher fatigue lives than G M 1 and G M 2.
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Figure 12.52: S tress -L ife  M aster  C urve C onvers ion  for All W eld  Interface Failures

A nalysis  o f  figure 12.52 is show n in figure 12.53. R em ov ing  the throat failures 

causes  the survival bands  to fit the data po in ts  m u ch  m ore c lose ly  w ith  on ly  one 

point ju s t  on the 0 .13%  survival band.
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Figure 12.53: Statistical A nalysis  o f  All W eld  Interface Failures
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T he s tre ss - l i fe  curve for the throat failures is show n  below  in figure 12.54. T he  test 

data  for throat failures show s good convergence ,  w hereas  w hen  converted  into a 

s t re ss - l i fe  curve the results show  reasonable  convergence .
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Figure 12.54: S tre ss -L ife  M aster  C urve C onvers ion  for All W eld Throat Failures

F igure 12.55 show s the certain ties o f  survival at 9 9 .87%  and 0 .13%  o f  the S - N  data 

for all w eld  throat failures. N oticeable  from  this graph is that with the reasonable  

am o u n t  o f  scatter in the results, the survival bands  to be reasonab ly  w ide, though  the 

survival bands b ind  all data points.
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Figure 12.55: Statistical A nalysis  o f  W eld  T hroa t Failures
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For the two other methods FLOW and Verity the S-N curves are shown in Appendix 

9 as they show very similar results to the manual method.

Table 12.3 shows all the parameters required for using the master S-N curves 

produced in this study.

Table 12.3: Battelle Structural Stress Master S-N Curve Parameters

A a  = aN)

Battelle Method Structural Stress
Failure Location Survival a b SE log(Nf)

Toe Failure
50% 5561.9 -0.233

0.2269
99.87% 3859.9 -0.233

Interlace Failure
50% 2526.4 -0.1483

0.2157
99.87% 2025.5 -0.1483

Throat Failure
50% 3096.1 -0.2257 0.3078

99.87% 1915.9 -0.2257

12.4.3.2 Battelle Equivalent Structural Stress

From the structural stress results in the previous section, the equivalent structural 

stress is calculated as described in section 10.7. These results are used to estimate the 

fatigue lives of the FUCA component. Figures 12.56 and 12.58 show the manual 

equivalent structural stress S-N curves for all weld toe failures and all weld throat 

failures respectively. Figure 12.56 shows that like the structural stress all the weld 

toe failures virtually collapse together so therefore one S-N curve is required.
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Figure 12.56: S tre ss -L ife  M aster C urve C on v ers io n  for All W eld  T oe Failures

Figure 12.57 analyses  the S-N curve show n in figure 12.56, and it show s that the data 

points  are well w ith in  the boundaries  o f  the 9 9 .8 7 %  and  0 .13%  survival.
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Figure 12.57: Statistical A nalysis  o f  All W eld  T oe  Failures

In figure 12.58 the d iffe rences  betw een  the in terface and throat failures is noticeable , 

as they have not co llapsed  together at all. T herefore  tw o separate  S-N curves  for 

w e ld  throat failures are required.
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Figure 12.58: S tre ss -L ife  M aster  C urve  C onvers ion  for All W eld  Throa t Failures

From  figure 12.59 the very  w ide survival bands for all the throat failures also show s 

w h y  the lap-shear and peel geom etr ies  need  separate  S-N curves.
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Figure 12.59: Statistical A nalysis  o f  All W eld  Throat Failures

Flaving an S-N curve for ju s t  the in terface failures is show n  in figure 12.60, w here 

the single lap-shear jo in ts  from both T K A  and G K N  have co llapsed  together, with 

lim ited  scatter from the test data.
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Figure 12.60: S tress -L ife  M aster  C urve C on v ers io n  for All W eld  Interface Failures

Figure 12.61 show s that the 9 9 .87%  and 0 .1 3 %  survival bands su rround  the data 

points  closely.
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Figure 12.61: Statistical A nalysis  o f  All W eld  Interface Failures

The S-N curve for the throat failures is show n in figure 12.62. This show s that there 

is reasonable  collapsing  o f  the load-life data  for G M 3 and G M 4.
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Figure 12 . 6 2 : Stress Life M aster C urve C onvers ion  for All W eld  Throa t Failures

Figure 12.63 analyses the throat failure S-N curve (figure 12.62) and show s that the 

9 9 .87%  and 0 .13%  survival bands are m uch  w ider  due to the scatter in the load-life 

results.
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Figure 12.63: Statistical A nalysis  o f  All W eld  Throat Failures

B oth the FL O W  and V erity  Equivalen t S tructural Stress results are very  s im ilar  to 

the M anual results so these will be found w ithin  A ppend ix  10.
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Table 12.4 shows all the parameters required for using the master S-N curves 

produced in this study.

Table 12.4: Battelle Equivalent Structural Stress Master S-N Curve Parameters

Act =  aNbf

Battelle Method Equivalent Sftructural Stress
Failure Location Survival a b SE log(Nf)

Toe Failure
50% 6603.9 -0.2327 0.2262

99.87% 4590.7 -0.2327

Interface Failure
50% 3003.6 -0.1483

0.2150
99.87% 2409.7 -0.1483

Throat Failure
50% 3681.1 -0.2256

0.3072
99.87% 2280.7 -0.2256

12.4.3.3 Sensitivity Study on Alternative Location of FE Stress

For all the S-N curves shown in section 12.5.1 and 12.5.2 the FE stress used was 

located at the "centre” away from the edge of the weld to avoid the effect of the weld 

start/stop as shown in figure 12.64 and 12.65. For all the coupon geometries, which 

are fully welded the FE, stress was collected in similar locations to GM1 IB in 12.64. 

The locations for all the other coupons are shown in Appendix 11.
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Figure 12.64: Location of FE Stresses Used for Conversion o f S-N Curves of 

GM11B
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For all partia lly  w elded  coupon  geom etr ies  the FE stress was collected  in s im ilar 

locations to G M 1 1 A  in 12.65.
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Figure 12.65: Location o f  FE Stresses Used for C onvers ion  o f  S-N C urves  o f  

G M 1 1 A

T ab le  12.5 show s the com parison  be tw een  the “cen tre” and the “ed g e” equivalent 

structural stresses. N oticeable  from the table are the d iffe rences  be tw een  using the 

centre  and the edge. C oupons ,  w hich  failed at the weld toe, have s lightly  h igher 

“cen tre” equ ivalen t structural stress than at the edge. W hereas  for w eld  throat 

failures, the edge stress is m u ch  h igher than the centre  stress, the sm oo th ing  o f  the 

w eld  toes causes  this.

T ab le  12.5: C om parison  o f  Battelle E quivalen t Structural Stress Centre  vs. Edge

C oupon
Failure

Locations

Equivalent Structural S tress M Pa

M anual C entre M anual Edge FLO W  C entre FLO W  Edge Verity C entre V erity Edge

CiM 1 1 A Weld Toe 28.553 27.558 29.035 29.107 28.058 28.500
GM1 IB Weld Toe 29.840 27.909 30.497 28.602 30.204 27.463
T M 1 1A Weld Toe 30.062 28.780 29.688 29.538 30.006 29.555
TM1 IB Weld Toe 30.516 30.271 31.034 30.108 30.866 29.298
TM2 Weld Toe 35.965 31.705 36.836 33.529 36.437 31.531

Side B Side B Side B Side B Side B Side B
TM 1 Weld Throat 50.921 56.903 51.916 58.273 50.595 58.892
GM1 Weld Throat 51.235 54.533 52.284 55.470 50.822 56.496
GM2 Weld Throat 44.127 37.420 45.369 39.862 45.218 37.206
GM3 Weld Throat 361.684 393.800 375.238 41 1.468 370.489 413.931
GM4 Weld Throat 369.096 291.622 380.267 320.381 377.384 284.117
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In Table 12.6 the equivalent structural stresses used to convert load-life curves to S- 

N curves is shown.

Table 12.6: Battelle Equivalent Structural Stress -  Edge Effects Sensitivity Study

Coupon Failure
Locations

Equivalent Structural Stress MPa
Manual Edge FLOW Edge Verity Edge

GM11A Weld Toe 27.558 29.107 28.500
GM11B Weld Toe 27.909 28.602 27.463
TM11A Weld Toe 28.780 29.538 29.555
TM11B Weld Toe 30.271 30.108 29.298
TM2 Weld Toe 31.705 33.529 31.531

SideB edge SideB edge SideB edge
TM1 Weld Throat 56.903 58.273 58.892
GM1 Weld Throat 54.533 55.470 56.496
GM2 Weld Throat 37.420 39.862 37.206
GM3 Weld Throat 393.800 411.468 413.931
GM4 Weld Throat 291.622 320.381 284.117

For the three Battelle Methods, using the FE stresses in Table 12.6 load-life curves 

were converted into S-N curves. Figures 12.66 -- 12.68 show the S-N curves for the 

manual method. There is little effect o f using the “edge stress” instead o f the “centre 

stress” as depending on the failure mode the edge stress will either higher or lower 

the Equivalent Structural Stress for a given life, then completely collapse the 

different geometry test data to a master curve.
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Figure 12.66: Edge Stress-Life Master Curve Conversion for All Weld Toe Failures
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In figure 12.67 the effect o f  using  the edge stress is quite  clearly  show n in the weld  

interface failures. T here  is lim ited convergence  in the co llapsing  o f  the interface 

failure results due  to the h igher FE predic ted  stresses used to convert  the results.
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Figure 12.67: Edge S tre ss -L ife  M aster C urve  C onvers ion  for W eld  Interface Failures

The effect o f  using edge stresses for the w eld  throat failures is show n in figure 12.68, 

w hich  show s som e convergence  o f  the test data.
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Figure 12.68: Edge S tre ss -L ife  M aster C urve  C onvers ion  for W eld  Throa t Failures
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The results o f doing the sensitivity study on edge effects using both FLOW and 

Verity is shown in Appendix 12 as the results show similar trends with slightly 

higher stress values.

12.4.3.4 Comparison of Original Battelle S-N Curves with Manual, FLOW  

and Verity S-N Curves

The original Battelle structural stress and equivalent structural stress S-N curves 

(Dong 2005) generated whilst developing the Battelle theory where digitised through 

Sigma Scan software. These S-N curves were then compared with the Manual, 

FLOW and Verity S-N and shown below in figures 12.69 and 12.70 the comparison 

against the Manual S-N curve. The comparisons against FLOW and Verity are 

shown in Appendix 13, as the results are very similar.

Figure 12.69 shows that all the weld toe failures and the weld interface failure are 

located within the scatter o f the original Battelle test data. Whilst the weld throat S-N 

curve at short lives is lower than the original Battelle data, at long lives it is well 

within the scatter of the original data.

The slope is different between the two sets of results. Overall the majority o f data 

seems to overlap with the data converted by Battelle.
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Figure 12.69: C o m p ariso n  o f  Original Battelle S tructural S tress S-N vs. M anual 

Structural Stress S-N C urves

T he E quivalent Structural Stress is ca lculated  using Eq.15 and  desc ribed  in section 

10.7. The values for the factors: m and I(r) used w here  the ones  reco m m en d ed  by  

Battelle. T he th ickness was the th ickness  used in the FE m odels  o f  each cou p o n  jo in t  

i.e. the m easu red  th ickness  o f  the coupon.

T he m anual equivalen t structural stress S-N curve com parison  w ith  the original 

Battelle S-N  curves  is show n  in figure 12.70. From ca lcu la ting  the equivalen t 

structural stress from  the structural stress the graph  show s that all the w eld  toe and 

interface fa ilures have higher stress values  than the original test data. T he throat 

failure results  are located w ith in  the scatter o f  the original Battelle data.
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Figure 12.70: C om parison  o f  O rig inal Battelle E qu iva len t Structural Stress S-N vs. 

M anual Equivalen t Structural Stress S-N

The d iffe rences  could  arise from the two factors m  and  I(r) values  not be ing  

ca lcu lated  d irectly  from the actual test results, instead o f  a ssum ing  the Battelle 

re co m m en d ed  values. Further w ork  m ust be carried out to see i f  the m value  does  

affect the results.

O ther d iffe rences  could  arise from the original test data  used by  Battelle hav in g  

different geom etr ies  to the ones investigated  in this project. N ot to m ention  the fact 

that d ifferent test conditions  and  failure criterions that cou ld  have been used, w hich  

are unknow n. T he original Battelle tests w ere  m ain ly  perfo rm ed  on thick m ateria l 

app rox im a te ly  10mm and this w ork is perfo rm ed  on material below  4 m m  in 

thickness. T he diffe rences also could  arise from  the greater flexibility  w ith in  the 

th inner materia l than the th icker materia l used by  Battelle.

Overall ,  to get an accurate  pred ic tion , the user is still adv ised  to use their o w n  

coupon  test fatigue data  to generate  the m aster S-N  curves instead o f  using  the 

Battelle curve  directly , w hich  has m an y  unknow ns.
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12.5 Regression Based on Stress

U sing  the S-N curves generated  in sections 12.4.2 and  12.4.3 for the V o lvo  and 

Battelle M ethods, the regression based  on stress analysis  w as com ple ted  as described  

in section 10.8.2. This  m ethod  reduces  the error in the stress, w hich  enables  

des igners  to be able to estim ate the endurance  limit o f  the material o r  com ponen t.  

Th is  regression  w as com ple ted  on both the V o lvo  and all the Battelle S-N curves 

generated.

12.5.1 Regression Based on Stress for the Volvo S-N Curves

Figures  12.71 -  12.73 show  the regression  based  on stress for all weld toe failures 

and  the in terface failures and  throat failures. All the analyses show  that the S-N data  

is well w ith in  the survival bands o f ± 3 a  (99 .87%  and  0 .13% ).
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Figure 12.71: Statistical A nalysis  o f  All W eld  T oe Failures

235



www.manaraa.com

1000

10 I— 
1000

Figure 12.72: Statistical A nalysis  o f  All W eld  Interface Failures
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Figure 12.73: Statistical A nalysis  o f  All W eld  Throa t Failures

Table 12.7 shows all the parameters required for using the master S-N curves

produced in this section.
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Table 12.7: Volvo Structural Stress Regression Based on Stress Master S-N Curve

Parameters

A  a  -  a N j '

Volvo Method Structural Stress
Failure Location Survival a b SE log(Ao)

Toe Failure
50% 3384.6 -0 .188

0 .0570
99 .87% 2283.1 -0 .188

Interface Failure
50% 2563 .50 -0 .1405

0.0361
99 .87% 1998.1 -0 .1405

Throat Failure
50% 2240 .70 -0 .1949

0 .0526
99 .87% 1557.6 -0 .1949

12.5.2 Battelle Structural Stress Regression

A nalys ing  the S-N curves as show n in section 12.4.3 by  the m ethod  described  in 

section  10.7.2, to understand  the certain ties o f  survival o f  a coupon, statistical 

ana lysis  occurs.  For the M anual Structural S tress curves the statistical ana lysis  is 

show n  in figures 12.74 -  12.76. For the m anual ca lcu la tions  w eld  toe and w eld  throat 

failures S-N curves fit well w ith  the least squares regression  survival bands  at 

99 .8 7 %  and 0 .13%  survival. For the two o ther m ethods  F L O W  and V erity  the 

statistical ana lysis  curves are show n A ppendix  14 as they show  very  s im ilar results to 

the m anual m ethod.
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Figure 12.74: Statistical A nalysis  o f  All W eld  T oe Failures
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Figure 12.75: Statistical A nalysis  o f  All W eld  Interface Failures
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Figure 12.76: Statistical Analysis  o f  All W eld  Throat Failures

Table 12.8 shows all the parameters required for using the master S-N curves

produced in this section.
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Table 12.8: Battelle Structural Stress Regression Based on Stress Master S-N Curve

Parameters

A ct =

Battelle Method Structural Stress
Failure Location Survival a b SE log(Aos)

Toe Failure
50% 3342.9 -0 .1918

0.0475
99 .87% 2407.9 -0 .1918

Interface Failure
50% 2158.1 -0 .1355

0.0301
99 .87% 1753 -0 .1355

Throat Failure
50% 2002.9 -0 .1889

0.0621
99 .87% 1304.2 -0 .1889

12.5.3 Battelle Equivalent Structural Stress

S ubsequen t statistical analysis  occurred  for the M anual,  F L O W  and Verity  

Equivalen t Structural S tresses o f  w hich  the M anual curves are show n  in figures 

12.77 -  12.79. W hilst the F low  and V erity  curves  w hich  show  s im ilar  trends are 

found in A ppend ix  15. F igures 12.77 -  12.79 show  that the S-N curve data  is well 

within the ± 3 a  survival bands.
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Figure 12.77: Statistical A na lysis  o f  All W eld  Toe Failures
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Figure 12.78: Statistical A nalysis  o f  All W eld  Interface Failures
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Figure 12.79: Statistical A nalysis  o f  All W eld  Throat Failures

Table 12.9 shows all the parameters required for using the master S-N curves

produced in this section.
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Table 12.9: Battelle Equivalent Structural Stress Regression Based on Stress Master

S-N Curve Parameters

A a  =  aN)

Battel] e Method Equivalent Structural Stress
Failure Location Survival a b SE log(ASs)

Toe Failure
50% 3985.3 -0.1918

0.0473
99.87% 2874.4 -0.1918

Interlace Failure
50% 2568.3 -0.1356

0.0300
99.87% 2087.4 -0.1356

Throat Failure
50% 2386.2 -0.189

0.0620
99.87% 1555.2 -0.189

12.6 FUCA Component

12.6.1 Failure Locations

Under constant and variable amplitude loading, the mode o f  failure for all the FUCA 

components is the same. The cracks would usually initiate at the root o f  the weld 

where it joins the flange and then propagate along the weld throat, known as “Throat 

Failure”.

FUCA component 12 had a different mode o f  failure under constant amplitude 

loading this is due to the actual component being incorrectly blanked when 

manufactured, especially when compared to other tested components. Under variable 

amplitude SAE Bracket loading, there was found a small notch in one o f  the welds, 

which initiated cracks and therefore reduced life.

12.6.2 Constant Amplitude

Lives at 2.5kN shown in figure 11.81, shows that at low load levels, crack 

propagation takes up a large proportion o f the life o f the component with crack 

initiation therefore covering a large percentage o f  life. However the lives for crack 

propagation to a crack length o f 35mm are very similar.

It is also worth noting from figure 11.81 that, at ±2.5kN there is a much larger scatter 

in the life for crack initiation to 10mm (between 430,000 and 700,000 cycles). This 

shows that at low load levels, crack propagation takes up an increased proportion o f  

the life o f the component with crack initiation therefore covering a small percentage
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o f  life. H ow ev er  the lives for craek p ropagation  to a crack  length o f  3 5 m m  are very 

similar.

12.6.3 Variable Amplitude Block Loading

Figure 12.80 show s the effect o f  the first load level in the R = -l  b lock  loading  cycle 

aga inst the constan t am plitude  loading. This  show s that the first load level o f  each 

b lock loading sequence  is the m ost dam aging .

10

• 0 . 2 7 9 2
2 8 .7 6 5 x

0 2718
y =  1 5  0 7 3 x

♦ 1 s t  B lo c k  F1 L oad  
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—  P o w e r  (C o n sta n t A m plitu de L o a d in g )
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F1 a n d  F 2  B lo c k  R e p e a t s ,  R
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Figure 12.80: R = - l  B lock L oading  vs. C onstan t  Loading  at the 1st Load Level

C o m p arin g  the second load level against the constan t am plitude  test data  is show n  in 

figure 12.81. This  show s that that the second  loading  level although  occurs  over a 

large n u m b er  o f  cycles is less d am ag in g  as the resu lts  are ju s t  low er than the constan t 

am plitude data.
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Figure 12.81: R --1  B lock  L oading  vs. C onstan t A m pli tude  Loading  at the 2 nd Load 

Level

C alcu la ting  the M iner 's  Rule from the constant am plitude  data is show n in figure 

12.82. U sing  a dam age  constant,  D=1 under-estim ates  the fatigue life w hich is great 

for design purposes. T he M iner's  Rule D am age constan t can be anyw here  betw een

0.7 and 2.3, so for the pu rpose  o f  this research, a ltering the D am age constan t D =1.60  

accura te ly  predic ts  the fatigue life o f  the F U C A  com ponen t.
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Figure 12.82: M iner's  Rule for R =-l  B lock Loading  Sequence
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A nalys ing  the R=0.1 b lock  loading using M iner 's  Rule required  the load am plitude  o f  

the block loading  sequence  to be converted  from R=0.1 to R = - l  as desc ribed  in 

section 10.9.4.

Figure 12.83 show s that using the M iner 's  Rule on the converted  data, a D am age 

constant, D=1 over-es tim ates  the block repeats  o f  the F U C A  com ponen t .  C hang ing  

the d am ag e  constant,  D =1 .60  also under-estim ates  the b lock  repeats o f  the F U C A  

com ponen t.
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Figure 12.83: M iner 's  Rule for R=0.1 Block L oad ing  Sequence

From  both  the under-es tim ations  on the M iner 's  Rule this show s that even with 

convert ing  the data back  to R = -l  m eans that there is an a lternative reason  for w hy the 

F U C A  co m p o n en t  took 4000  repeats to fail.

On close inspection  o f  the rig it w as noticed that the ac tua tor a rm  w ent out to the 

m ax im u m  load the load cell read ing  was nega tive  and w hen  it re turned  to the 

m in im u m  load it was positive. This m eans that the w hole  test w as be ing  done under 

the com press ive  state.

By testing under com press ive  loading conditions , this w ould  expla in  w h y  the test 

took 4000  repeats  to fail, as at 0 .7kN  the crack w o u ld  be v irtually  open. A lthough  if  

it were under tensile cond itions , 7kN w ould  be the m ost d am ag in g  as the crack is

♦  B lo c k  L o a d in g  ■  M iner's C a lcu la tion  D =1 A  M iner's C a lcu la tio n  D = 1 .6 0
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fully open  at this load. But with  it be ing  under  com press ion  no dam age  occurs from 

it.

Therefore  to ana lyse  the R = 0 .1 b lock loading  results  the conversion  w ou ld  not be

using  up to the R = -l  side o f  the G o o d m an  d iag ram  but the o ther  side. T h is  side as

show n  in figure 12.84 has no in fo rm ation  availab le  to be used therefore som e

assum ptions  m ust be m ade. For this com press ive  loading  the R -Ratio  is R=10.
\ \

N
S

Mean am plitude

R=0 R = 0 .1
R=-1

R=0.5

R=0)
Mean Load

Figure 12.84: G o o d m an  D iagram  Extension

T hree  assum ptions  were m ade  as to how  to ca lcu la te  the R =10 value. T he  subsequent 

M iner 's  Rule ca lcu la ted  d am ag e  is show n in T able 12.10.

T ab le  12.10: M iner 's  Rule D am age Results for the 3 A ssum ptions  o f  R = 10

Assumption Assumption Estimated Constant Amplitude Life Predicted

# Method for R=10 3.535kN 1.7675kN Block Repeats

1 <N

IIs

513115.1935 6572902 .179 3013.738

2 <Tn— a a 915352 .514 15563330.77 5985.308

3 M ,= 0 .25 1214955.169 15563330.77 7315.935

One assum ption  that w as m ade  is that the values o f  Mi and M 2 are the sam e and the 

G o o d m an  d iagram  looks s im ilar to figure 12.85. T he R =40  value  w as  calculated  

through ch an g in g  the equation  to Eq.37.
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R=10 Mean Amplitude
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R — 1

R = 0 .5

o a( R = 0 )  

o . ,(R = 0 .5 )

1 0 ) o „ ,(R -± ° o ) M ean  L oad o ra( R = 0 )

Figure 12.85: First A ssum ption  M | =  M 2 V alues

< r / - ' = ( l  - M i  ■ ( % ) ) ■  O .  Eq.37

T he second assum ption  involved  a ssum ing  that the m ean  load equalled  the load 

am plitude  i.e. o m- - o a so that the G o o d m an  D iagram  for R = 10  is show n  in figure 

12.86 with a p lateau be ing  reached  at R=±oo. This is w here  at the m ax im u m  load 

applied  touches  0 and  every th ing  is negative  and closed, there fo re  no further m ean  

stress effect occurs.

R -± o o  

R = 1 0  '

M ean A m p litu d e

R = 0 R = 0 .1
R = -

O a(R = -
R = 0 .5

o m(R = 1 0 )  o ,n(R = iw >)
M ean  Load

Figure 12.86: A ssu m p tio n  2 M ean Load Equals Load A m pli tude

T he third assum ption  involves the Mi value  to rem ain  the sam e for R =10  as it was 

for R = - l ,  i.e. M i= 0 .25 .  The co rrespond ing  G o o d m an  d iagram  is show n  in figure 

12.87.
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Figure 12.87: A ssum ption  3 M] V alue =  0.25

Figure 12.88 show s the results o f  the 3 a ssum ptions  M iner 's  Rule for R=10. 

A ssum ption  1 under-estim ates  the F U C A  co m p o n en t  b lock repeats  w hils t  both 

assum ptions 2 and 3 over-es tim ate  the b lock repeats.

■  A •
♦

♦  B lock  L o a d in g

■  A ssu m p tio n  1 (M 1= M 2)

▲ A ssu m p tio n  2  (M ea n  L o a d = -L o a d  A m plitu de)

•  A ssu m p tio n  3  (M1 = 0 .2 5 )

100 1000 10000
B lo c k  R e p e a t s ,  R

Figure 12.88: M iner's  R ule for R=10

W ith  only one test result at R = 0 .1 it is very  difficult to establish  exactly  which 

a ssum ption  m ore accura te ly  predic ts  the F U C A  co m p o n en t  b lock loading  results. 

W ith  a single result the approx im a te  range o f  es tim ating  the b lock repeats  will be 

be tw een  assum ption  1 and  2 due to the inability  to de term ine  how  m u ch  scatter there 

will be in the fatigue results.
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T o  m ore accura te ly  predic t the effect o f  m ean  stress under block loading  conditions  

o fR = 0 .1  will require  further testing.

12.6.4 Variable Amplitude SAE Bracket Load-Time History

To analyse  the variable am plitude  S A E  B racket  test data  there are a n u m b er o f  

m ethods  w h ich  can be used. F igure 12.89 sh o w s  the effect o f  using the average life 

and  log average  life to estim ate the fa tigue lives, this was done by exc lud ing  

co m p o n en t  26 w hich  encounte red  several rig p ro b lem s  during  test. T he  log average 

and  average  life predic t the life as 157 and  162 cycles respectively . This accura te ly  

represents  the m ajority  o f  the test results.
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F igure  12.89: A verage  Life o f  V ariab le  A m p li tu d e  S A E  B racket Results

C alcu la t ing  M iner's  Rule is show n in figure 12.90, this also bands the m ajority  o f  the 

fa tigue lives. U sing  the constan t am plitude  life to 10mm curve for the M iner's  

ca lcu la tion  accura te ly  es tim ates  the life to the test term ination  criterion. U sing the 

constan t am plitude  life to 3 0 m m  curve s ligh tly  over-p red ic ts  the fatigue lives.
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Figure 12.90: M iner 's  Rule

C alcu la ting  the M iner 's  d am ag e  using  the ra in t low  analysis  and sca ling  the results as 

described  in section 10.9.2.1 is show n in figure 12.91. Both the M iner 's  calc es tim ate 

and calc M iner 's  d am ag e  D=1 predict very  sim ilar  results as they  both  use D=1 to 

calculate  the estim ated  life. C h an g in g  the d am ag e  constan t D =0.7 for life to 10mm 

m ore accura te ly  predic ts  the results as it covers the shorter fatigue lives from  one 

test. U sing  D =0.7  to a  life o f  3 0 m m  also under-estim ates  the m ajority  o f  the final 

failures o f  the test co m p o n en ts  w hich  is good  as the test term ination  criterion  w as 40 

-  5 0 m m  crack length.
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Figure 12 . 9 1: M iner 's  Rule M anually  Calcu la ted

12.6.5 FIJCA Life Predictions

For both the V olvo  and Battelle m ethods, the m odels  have been p roduced  with a 

varia tion in the weld s tart/s top  location, w hich  represents  the d iffe rence betw een  the 

actual tested F U C A  com ponen ts ,  w hich  had sm alle r  w eld  start/stop differences.

Both the V o lvo  and  Battelle M ethods are w ell-es tab lished  for genera ting  stresses and 

fatigue lives at the weld toe but they have no m ethod  for dea ling  with weld throat 

failures. The F U C A  co m p o n en t  failed through the w eld  throat and  so this part o f  the 

research has been  to identify  the correc t locations for the FE stress used to calculate  

estim ated  fatigue lives.

12.6.5.1 Volvo Method

From  the figures 11.88 -  11.91 the results c learly  show  that w hen  com par ing  the full- 

length and cu t-length  s tandard  V olvo  w eld  represen ta tion  that they do not m odel the 

stress in the weld properly . T hey  p roduce  a high stress value, w hich  in turn lowers 

the pred ic ted  fatigue lives. T he  full-length and  cu t-length  tr iangular weld  

representa tion  m ore  c lose ly  es tim ates the fatigue lives o f  the F U C A  com ponen ts .  

F rom  this investigation  it is clear that the standard V o lvo  w eld  requires m odification 

to incorporate  the back panel as this better represents  the stiffness o f  the weld nugget.
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The V olvo  m eth o d o lo g y  incorporated  into M S C .F a tigue  w as based  on generating  

fatigue lives o f  thick m ateria ls  and therefore the s tandard  w eld  representa tion  show n  

in figure 10.39 was deve loped  as in thick m ateria l the w eld  does not penetrate  the 

parent sheet m aterial as show n  in figure 12.92a. W hereas  this research  w as  carried  

out on H S L A  w ith  a materia l th ickness ~ 3 m m  w hich  is deem ed  thin m aterial and 

therefore the w eld  will penetrate  the paren t sheet m ateria l as show n  in figure 12.92b. 

This is w h y  the standard  V olvo  w eld  represen ta tion  is not rigid enough  to estim ate 

the fatigue lives.

Figure 12.92: Schem atic  D iagram  o f  a) Th ick  M aterial W elded  Joint Used to 

G enerate  O riginal M S C .F a tigue  Program , b) T h in  M aterial W elded  Jo in t U sed  in this 

Research

T he position o f  the w eld  in the FE m odel has little effect on  the fatigue lives and  this 

is show n in the full and cut length in the tr iangu lar  w elds  (f igure 11.88). T he F U C A  

test data is well w ith in  the range o f  the full-length  and  cu t-length  es tim ate fatigue 

lives.

12.6.5.2 Battelle Method

From  figure 11.96 the location o f  the elem ents  used to collec t the nodal force from  is 

critical in d e te rm in ing  the pred ic ted  fatigue lives o f  the F U C A  com ponen t.  U sing  the 

elem ents  from inside the w eld  line as the weld  root over es tim ates  fatigue lives o f  the
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FUCA components shown in figure 11.93. Using the elements underneath the weld 

root node as the weld root under estimates the fatigue lives.

The different paths used to calculate the Battelle Structural Stress was a necessity as 

the definition o f the weld line in the FUCA component is difficult. For coupons the 

weld line has a definite start/stop location (i.e. the edge o f the coupons), whilst in the 

components it is unclear how to define a weld line that is welded to a longer piece o f  

material.

Path 1 was the weld line itself and Paths 2 and 3 were the weld line incorporating 

elements o f the component flange. Using Path 1 for both the full-length and the cut- 

length triangular welded models under-estimates the fatigue lives as it a has a very 

high stress which is the outcome o f just using the last element o f  the weld and not 

averaging the forces and moments between two elements.

Whilst Path 2 and 3 much more closely predict the fatigue lives, with Path 3 having 

the nodal forces and elements averaged over more o f the component flange, which in 

turn lowers the structural stress and increases fatigue lives. This indicates that with 

paths 2 and 3 the elements surrounding the weld provide structural support and load 

sharing capabilities. This therefore more accurately represents the stiffness o f  the 

welded component, which is observed through fatigue testing.

The position o f  the weld start/stop shown in figure 11.97 shows that the estimated 

fatigue lives are sensitive to the weld start/stop location. Showing that for as close an 

estimate to the actual lives, the FE model requires the weld to cover the plate to 

produce a stiffer model. Whereas removing one element to represent the weld start 

location o f some o f  the actual FUCA components causes the model to have a reduced 

stiffness and therefore have a higher stress so reducing the fatigue lives.

Accurate representation o f the weld starting point is critical to achieve reasonable 

representation o f fatigue lives.
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12.7 FUCA Life Predictions -  Variable Amplitude Loading

12.7.1 Variable Amplitude Block Loading

From figures 11.98 -  11.99, it is noticeable that with a triangular weld representation 

used for both Volvo and Battelle Methods, modelling the weld start/stop location has 

some effect on the predicted number o f repeats o f the block loading signal for the 1st 

load level (shown in figure 10.20). For Battelle full and cut-length and Volvo cut- 

length models with two values o f  the Miner’s Damage constant, the predicted 

number o f  block repeats o f  signal 1 is much less than the average and log-average 

test data.

The full-length model under V olvo’s Method accurately predicts the average test life 

at D = l, and over-predicts life when D=1.6. A similar trend is noticeable in figures 

11.100 - 11.101.

This under-prediction could arise from the fact the test was done at an R-ratio o f R=- 

1, whilst the master S-N curve for throat failure, which was used to predict the lives, 

was generated through coupon fatigue tests with an R-ratio o f  R=0.1.

As shown in figures 11.98 -  11.101 when mean stress correction factors are applied 

to the Volvo method, the under-predictions become over-predictions for both 

models. Battelle’s Method currently has no mean stress correction, therefore, the 

difference in R-Ratio between master curve and test cannot be overcome.

To accurately predict variable amplitude life o f  any component, it is necessary for 

the coupon fatigue test work to cover different R-ratios before converting into a 

master S-N curve. Longer levels o f  life prediction would have been possible if  an 

R =-l master S-N curve was available.

Also this under-prediction could arise from the fact that typical FE prediction is 

based on life to a “small crack” e.g. 10mm. Whereas the life used was to 40 -  50mm 

for the FUCA component test, instead o f life to a small crack. In components, when a 

crack propagates, the applied load is being redistributed along many different 

redundant load paths, so an error was introduced due to the load pattern change.
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In other words, since there is only one (a single) load path in the coupon joints for 

the master S-N data generation, the initiation and propagation o f cracks in the 

coupons resulted in an increase in the crack growth driving force. This accelerated 

crack growth rate, resulted in little differences in fatigue lives to cracks o f 10mm or 

30-40mm, and to final failure even. In the case o f the FUCA component, on the other 

hand, the redundant load paths caused a reduction in the crack driving force as the 

crack lengths increased, and in turn a slow-down in the crack growth rate. This 

resulted in a larger difference in the lives to cracks o f  10mm and 40~50mm.

Changing Damage constant values from between D = 1 -  1.6 cannot be used to 

explain the fatigue life under-predictions noticed as other factors such as residual 

stress are different for different components. Therefore from this work keeping a 

D=1 is recommended.

Figure 11.102 shows that when comparing the FUCA component test at R=0.1 to the 

master S-N curve for throat failure generated at R =0.1, no mean stress correction was 

required. The predicted life is much lower than that o f the test data because the 

prediction is based on life to a small crack in a coupon whilst in the component, life 

to a small crack would be much lower. Therefore, with the load redistributed to life 

at 30mm there is much more under-prediction in repeats o f  block life.

12.7.2 Variable Amplitude SAE Bracket Load-Time History

Figures 11.103 -  11.104 show that, for the Battelle method regardless o f the damage 

constant and the model weld start/stop location, the predicted block repeats o f  the 

signal is over an order o f magnitude less than the log-average test data. Whereas for 

the Volvo method changing the Damage constant to D=1.6 both models are with an 

order o f magnitude difference o f the log-average test data. Using D=1 the full-length 

model is within an order o f  magnitude whilst the cut-length model is over an order o f  

magnitude less than the test data.

Mean stress correction on both models for the Volvo method increased the predicted 

life by a factor o f 3.75, which is a very good trend even though the values still under- 

predict the log-average test repeats.
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Tables 12.11 -  12.12 show the ratios o f predicted life compared to actual lives for 

different Damage constant values. For the fully random load-time history, it is 

noticeable that the full-length model has a higher stress than the cut-length model. 

Therefore accurate weld start position must be modeled to get more accurate 

predictions.

Table 12.11: Comparing Predicted Life to Average Test Data for Each Method at 

D=1

Prediction M ethod at D=1 Predicted Life Repeats T est Data Ratio Predicted vs. Actual
Battelle Full-Tri 7.64 163 0.047
Battelle Cut-Tri 2.23 163 0.014
Volvo Full-Tri 20.35 163 0.125
Volvo Full-Tri Mean Stress Correction 77.15 163 0.473
Volvo Cut-Tri 7.5 163 0.046
Volvo Cut-Tri Mean Stress Correction 28.15 163 0.173
Battelle Constant Amplitude 8120 23705.17 0.343
Volvo Constant Amplitude 8029.32 23705.17 0.339

Table 12.12: Comparing Predicted Life to Average Test Data for Each Method at 

D=1.6

Prediction M ethod at D=1.6 Predicted Life Repeats T est Data Ratio Predicted vs. Actual
Battelle Full-Tri 12.22 163 0.075
Battelle Cut-Tri 3.56 163 0.022
Volvo Full-Tri 32.56 163 0.200
Volvo Full-Tri Mean Stress Correction 123.44 163 0.757
Volvo Cut-Tri 12 163 0.074
Volvo Cut-Tri Mean Stress Correction 45.5 163 0.279
Battelle Constant Amplitude 8120 23705.17 0.343
Volvo Constant Amplitude 8029.32 23705.17 0.339

From these two tables it is noticeable that more errors were introduced from the 

simple counting method and from the Miner’s Calculation.

Overall, the Battelle Method for variable amplitude loading does require an 

algorithm to correct for the effects o f  mean stress. The current mean stress correction 

factor within the Volvo method also needs further work to establish an improved best 

correction method for the mean stress effects.
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13. INDUSTRIAL APPLICATIONS

T he curren t EngD  research  has identified that, for any  w eld  there are a n u m b er  o f  

poss ib le  failure m odes  and  locations:

•  T oe Failure -  2 locations

•  Throat Failure

o  Interface 

o  T hroa t Failure

To ana lyse  co m p o n en ts  w ithou t  k now ing  the failure m odes  to start w ith  will require 

all possib le  failure m odes  to be checked . This  chap te r will illustrate this process.

13.1 Volvo Method

For the V olvo M ethod, the location o f  s tresses to be co llected  from  for the various 

m odes  o f  failure are show n  in figure 13.1, the locations are:

•  T oe Failure Positions 1 and 2

•  Throat Failure -  Posit ion  3

•  Interface Failure -  Position 3

FE Stress  
L ocations

W eld

Triangular 
back panel

Figure  13.1: Location o f  FE Stresses for V arious M odes  o f  Failure

Full- length  and cu t-length  tr iangular  w eld  m odels  used are show n in figure 1 1.41b 

and  1 1.42b. For each m odel and  the various m odes  o f  failure the 1st and m ax stress 

w as  collated , as desc r ibed  in section 11.7.1 and figure 11.87. F igures 13.2 -  13.3 

show  the predic ted  fa tigue lives for the various m odes  o f  failure for the fu ll-length 

and  cu t-length  m odels.

For the full-length m odel,  as show n in figure 13.2, the m o d e  o f  failure with  the 

low est values o f  both the 1st and m ax stress is the throat failure m ode. The throat 

failure 1st and  m ax stress reasonab ly  predic ts  the test co m ponen ts  fatigue lives.
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Throat fa ilure has the low est stress and  is therefore  the m ost likely m ode o f  failure. 

N oticeable  from the figure is that the m ajority  o f  the toe fa ilu re ’s stress and the 

interface failure stress is m uch h igher than the throat failure so the range o f  predic ted  

fatigue lives is m u ch  greater.

B ased on ca lcu la ted  “ structural s tress” life p red ic tion  toe failure position  2 is the 

m ost likely failure m ode. H ow ever, the throat failure stress is not m uch  h igher than 

toe failure posit ion  2, and because  o f  the scatter assoc ia ted  with fatigue, both failure 

m odes  are likely. H ow ever  the pred ic tions are too close to d is tinguish  the predic ted  

m ode o f  failure. F rom  the test the failure m ode  observed  was throat failure but it 

could  be possib le  that toe failure could  occu r  as well.

10

<v
■3

♦  Ccnstart A lt itu d e  Test Data 
Toe Failure Position 2 - Mat Stress 
Toe Failure Position - 1 Kte* Stress 
Throat Failure - Max Stress 

-  - Iterface Falure - fvtax Stress

Toe Failure Position 2 - 1st Stress 
Toe Failure Position 1- 13 Stress 
Thro a  Failure - 1st Stress 
Iterface Failure- 1st Stress

1.E+02 1 .M 3  1 .& 0 4  1.E+05 1.E+06 1 .B 0 7  1.E+08 1 .E+OQ 1.E+10
C ycles, W

Figure 13.2: Full-Length  T riangu la r W eld  Predicted  Fatigue Lives for All Possible 

M odes  o f  Failure

Figure 13.3 show s the effect o f  a lter ing  the w eld  start position  by  an e lem ent on  the 

p red ic ted  fatigue lives for all m odes  o f  failure for the cu t-length  m odel. F or the 

m ajority  o f  the failure m odes, the 1st and m ax stress results are exactly  the sam e for 

the cut model so no fatigue life range is shown. C learly  no ticeable  from  the figure is 

that aga in  the throat failure has the lowest stress and lowest fatigue life p red ic tions  to 

all the o ther m odes  o f  failure.
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 Toe Failure Position 1 - 1 st Stress
 Toe Failure Position 2 -  1st Stress
 Throat Failure - 1st Stress
 hterface Failure - 1st Stress
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Figure 13.3: C u t-L en g th  T riangu la r W eld  Pred icted  Fatigue Lives for All Possible 

M odes o f  Failure

From this s tudy, further w ork  has been identified  and is required  to d is tinguish  the 

locations o f  the FE stress used for the throat and  interface failure m odes, as currently  

they use the sam e location.

13.1.1 Assessment of the Volvo Method

In this EngD  study, the FE-paekage  M S C .N astran  has been used  for fatigue life 

predic tions o f  w elded  jo in ts .  For w eld  toe failures, the M S C .F a tigue  m odu le  is 

au tom ated  to pred ic t s tresses and  the fatigue lives at both  w eld  toe positions.

The limitation o f  this package  is that for w eld  throat and  interface failures, there is no 

au tom ated  m ethod  o f  p red ic ting  the stress in the correc t locations. For this the fringe 

results around  the w eld  had to be m anually  in terrogated  to collate  the predic ted  

stress, and fatigue lives were m anually  calcu la ted . This  is t im e-co n su m in g  m ethod, 

w hich needs au to m atin g  w ith in  M S C .F atigue  m odu le  for ease o f  use.

13.2 Battelle Method

For the Battelle M ethod  the location o f  s tresses to be co llec ted  from  for the various 

m odes o f  failure are show n  in figure 13.4, the locations are:

• Toe Failure -  Positions 1 and 2
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•  Throat Failure  -  Position  4

•  Interface Failure -  Position  3

FE Stress 
L ocations

-Weld

Triangular 
back panel

Figure 13.4: Location o f  FE Stresses for V arious M odes  o f  Failure

Full- length and  cu t-length  triangular w eld  m o d els  used  are show n  in figure 1 1.41b 

and 11.42b. For each m odel the structural stress w as ca lcu la ted  as described  in 

section 10.7. F igures  13.5 -  13.6 show  the pred ic ted  fatigue lives for the various 

m odes  o f  failure for the fu ll-length and cu t-length  models.

Figure 13.5 show s that for the full-length m odel,  the throat failure m o d e  likew ise has 

the lowest stress for a g iven life and therefore  in this case will be the pred ic ted  m ode 

o f  failure. Both locations o f  the toe failure and  the interface failure have m uch higher 

stresses and over  predict the test data by several m agn itudes  o f  life.

10

1 E + 0 3  1 .E + 0 4  1 .E + 0 5  1 .E + 0 6  1 .E + 0 7  1 .E + 0 8  1 E + 0 9  1 .E + 1 0  1 .E + 1 1

C y c le s ,  N f

*  C o n sta n t A m plitu de T e s t  D ata  

Throat Failure

 T o e  F ailure - P o s it io n  1

 Interface F ailure

 T o e  F ailure - P o s it io n  2
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Figure 13.5: Full-Length Triangular Weld Predicted Fatigue Lives for All Possible

Modes o f  Failure

Figure 13.6 show s the affect o f  the w eld  start location  on the predic ted  fatigue lives 

o f  the F U C A  com ponen t.  It is c learly  show n  in the figure that the m ain  predic ted  

failure is at the w eld  throat for this co m p o n en t  as this m ode o f  failure has the lowest 

fatigue life. C h eck in g  the toe failure and the interface failure posit ions  show s that 

they  over  pred ic t the failures o f  the test data  by  several m agnitudes  o f  life.

T he throat failure o f  the cu t-length  m odel has low er life than the full-length m odel 

show ing  that the pred ic ted  fatigue lives are sensitive to the w eld  start location.

10
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♦ C o n sta n t A m plitu de T e s t  D a ta   T o e  Failure - P o s it io n  1

—  T hroat Failure

T o e  F ailure - P o s it io n  2

 Interface F ailure
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C y c le s ,  N f

Figure 13.6: C u t-L eng th  T riangu la r W eld  Pred icted  Fatigue Lives for All Possible  

M odes  o f  Failure

13.2.1 Assessment of the Battelle Method

In this EngD  study, the Battelle m eth o d o lo g y  was incorporated  into two C A E  

techn iques  F L O W  and FE -Safe  Verity. This  is an im proved  techn ique  to 

M S C .F a tigue  as, the Battelle m ethod  is au tom ated  for pred ic ting  stresses and  the 

fatigue lives at both weld  toe failures and w eld  throat failures.
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The Battelle methodology was derived for weld toe failure with the correct S-N 

curve used, the techniques should predict for weld throat failures - but this is were 

the technique needs improvement.

For weld throat failures, there are two methods o f  crack propagation from the weld 

root, identified during this study must be separated. The original methodology 

generalises throat and interface failure as “throat failure”. Therefore the 3rd failure 

mode - Interface failure must be accounted for.

The result tables should therefore clearly state which mode o f  failure is predicted 

along with the fatigue lives.

13.3 Summary

To summarise all my EngD work described so far I propose the following procedures 

for predicting weld fatigue lives using both Volvo and Battelle methods. These 

procedures provide significant enhancements to the existing methods, which are 

limited to fatigue life predictions o f  weld toe failures only.

MSC.Nastran has been the main FE software code used throughout the present 

research. Therefore some o f the steps may be specific to MSC.Nastran. However 

equivalent functions may be found in other FE codes.

13.3.1 Analysis Procedure Based on the Volvo Method

I. Prepare and Analyse the FE Model

•  Select the component or region o f an automotive chassis structure to be 

analysed.

•  Build FE Model using shell elements, with a recommended element size o f  

3~6mm.

• Weld Representation -  Use triangular arrangement to represent welds with 

shell thickness the same as rest o f  component.

• Create a copy o f the model -  one for toe failure, the other for throat and 

interface failure.

•  Ensure the element normals are in the correct direction for the subsequent 

FE analysis shown in figure 13.7.
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Normals

a)

F igure  13.7: N orm al D irections for a) T oe Failure, b) Throat and Interface Failures

• Optional - R en u m b er  nodes a long  the w eld  line to easily  identify  them  

during  the FE result ex trapo la tion  phase.

•  A pply  load and  b o u ndary  cond itions representa tive  o f  test or actual in- 

service conditions.

•  Select relevant FE result outputs , e.g.: stresses, strains and grid point 

balance forces (G P F O R C E ) to be  written out w hen runn ing  M SC.N astran .

•  Edit FEm odel input file ( .b d f  or .dat) to ensure the “cu b ic” stress 

ex trapolation  option is selected instead o f  the b i-l inear ex trapola tion  “b ilin” 

- e.g.: S T R E S S (P L O T ,S O R T 1 ,R E A L ,V O N M IS E S ,O JB IC )= = A L L

• Perform  linear elastic FE analysis.

II. Extract FE Results in Preparation for Fatigue Analysis

•  C heck  all possib le  w eld  locations as show n in figure 13.8:

W eld
FE Stress 
L ocations

Triangular 
back panel

Figure 13.8: Location o f  FE Stresses for V arious M odes o f  Failure
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• Toe Failure:

o For toe failure, select all weld 

toes elements and nodes

(MSC.Fatigue has a software 

module available to do this).

o Ensure that the shell Maximum 

Principal 2D in-plane stress is 

used.

o Extract the weld toe stress -  

maximum principal 2D stress 

from both surfaces o f  the 

element (Zi and Z2) as 

described in figure 11.35.

• Throat and Interface Failure:

o For throat and Interface failure, 

remove the toe weld elements 

to ensure the FE stress is not 

averaged over those elements.

o Ensure that the shell maximum 

principal 2D in-plane stress is 

used.

o Extract the weld throat or 

interface maximum principal 

2D stress from both surfaces o f  

the element (Zi and Z2) as 

described in figure 11.35.

III. Perform Fatigue Analysis For All Failure Modes and Locations

•  Scale and or offset the extracted FE Stress to represent the load-time 

history.

• Superposition the stress if  required for multiple load-time histories.

•  Establish the effective stress range and mean values from Rainflow 

counting.

• Calculate the damage, based on the weld S-N curve for the same weld 

failure mode. Perform mean stress correction as appropriate.

• Sum up the total damage using Miner’s Rule.

• Establish the fatigue lives N  = —— .IDi
•  Or if  component or system has been fatigue tested, for all methods calculate 

the predicted life from the data generation S-N curves for the respective 

modes o f failure.

IV. Review Fatigue Analysis Results

•  The lowest life is the predicted failure location. With the lowest life 

showing the predicted mode, location and life o f  failure.

263



www.manaraa.com

13.3.2 Analysis Procedure Based on the Battelle Method

I. Prepare and Analyse the FE Model

• Select the component or region o f automotive chassis structure to be

analysed.

• Build FE Model using shell elements with a recommended element size of 

3~6mm.

• Weld Representation - Use triangular arrangement to represent welds with 

shell thickness the same as rest o f component.

• Define the force direction as parallel to the weld line.

• Optional - Renumber nodes along the weld line to easily identify them 

during the FE result extrapolation phase.

• Create on selected nodes for each potential failure locations a local

coordinate system in the correct orientation for the Battelle Structural Stress

Calculation.

• Optional - Renumber coordinate system along the weld line to easily 

identify them during the FE result extrapolation phase.

• Apply load and boundary conditions representative o f test or actual in- 

service conditions.

• Select relevant FE result outputs, e.g.: stresses, strains and grid point 

balance forces (GPFORCE) to be written out when running MSC.Nastran.

• Perform linear elastic FE analysis.

• Optional - Edit FEm odelinput.bdf (or .dat) file to ensure:

o GPFORCE(punch)=all or for specific data set GPFORCE(Punch)=l 

o To write out for renumber nodes set 1 = node start,thru,node end

• From FEmodel_input.dat file write out the relevant local coordinate system 

details for each node of the local coordinate system.

• If necessary, calculate the vector cross products for converting force from 

global to local coordinate system.

II. Extract FE Results in Preparation for Fatigue Analysis

• Check all possible weld locations as shown in figure 13.9:
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FE Stress 
Locations

.Weld

T riangular 
back panel

Figure 13.9: Location of  FE Stresses for Various Modes o f  Failure

• For toe failure, throat and interface failures select the relevant positions.

• From the Nastran FE results (punch) file, read out the respective force and

moments for the nodes for the correct elements.

• Transfer these global positions into a local coordinate system.

• Convert the nodal forces and moments into distributed forces and moments 

along element edges (weld lines)

• Calculate the Battelle Structural Stress.

III. Perform Fatigue Analysis

• Scale and or offset the calculated Battelle Structural Stress to represent the 

load-time history.

• Superposition the stress, if required, for multiple load-time histories.

• Establish the effective stress range from Rainflow counting.

• Calculate the damage, based on the weld master structural S-N curve for the

same weld failure mode.

• Sum up the total damage using Miner’s Rule.

i
• Establish the fatigue lives N =

EZ)

•  O r i f  com ponen t  or system  has been fatigue tested, for all m e thods  calculate 

the pred ic ted  life from the data  generation  S-N curves for the respective 

m odes  o f  failure.

IV. Review Fatigue Analysis

•  The lowest life is the pred ic ted  failure location. W ith  the lowest life 

show ing  the pred ic ted  m ode, location and  life o f  failure.

265



www.manaraa.com

14. CONCLUSIONS

14.1 Coupon Testing for Data Generation

From all the results produced and analysed, these are the main conclusions:

• Test termination criteria had little effect on test results, for coupon joints.

• There is little difference in the weld performance, on a per unit weld-line 

length basis for lap-shear joints GM1 and GM2 and the peel joints GM3 and 

GM4.

• Partially welded single lap and double lap-shear joints performed marginally 

better than the fully weld joints.

• Full and partially welded coupon test data for the single lap-shear joints from 

both suppliers could potentially use the same master curve.

• Partially welded and fully welded peel joints show very good correlation with 

some crossover between high and low loads.

•  Double-weld lap-shear joints appear to have better fatigue lives than the 

single lap-shear welds.

•  Single lap-shear joints for both suppliers have similar fatigue lives.

• GKN double lap-shear joints have better fatigue lives than TKA, indicating 

that welding settings and weld quality do affect fatigue performance.

•  Lap-shear joints performed significantly better than the peel joints.

• T-Shaped joints performed better under axial loading than under bending and 

lateral loading.

• Mean stress does affect fatigue lives especially at long lives for TM1 IB and 

GM2.

• High load cycles are the most damaging cycles in block loading.

• Under variable amplitude conditions, double lap-shear welds are more 

efficient than single welds.

• Under variable amplitude conditions, lap-shear welds perform better than T- 

shaped joints.

•  At present, R=0.1 curve was used for R-ratios less than 0.5 and R=0.5 was 

used for R-ratios greater than 0.5, which under-estimates the life of TM11A. 

Further test work required to improve the predictions.
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14.2 Failure Locations

• Three locations of failure defined -  toe failure, Interface (throat) failure 

and Throat failure all seen in the coupons joints tested.

14.3 Coupons FE Modelling

14.3.1 FE Modelling with Experimental Verification
• The results indicate that increasing the thickness o f the weld, or having a

back plate (tri) affects the finite element stress predicted. Shell models 

showed better predicted stress values than solid models.

• Results show that predicted stress would slightly under-predict strain gauged 

results at low load levels but at high load levels the predicted stress is 

significantly lower.

• Compiling all the results it shows that for single lap-shear coupons the 

predicted stress is within the photoelasticity scatter. Whilst for the double lap- 

shear, the finite element results are very conservative in predictions.

• The effects of finite element mesh sizes on the predicted FE stress were 

investigated, with the results indicating that the element mesh size has little 

effect on the prediction of the stress in simple joints.

• Overall the control of angular alignment is very important in testing and 

critical to the subsequent analysis o f the results.

14.3.2 Volvo Structural Stress

• Data for all weld toe failures can result in a single master structural stress S-N 

curve. However the data for peel and lap-shear coupon joints were grouped 

based on their failure modes, i.e. throat and interface failures. A master 

structural stress S-N curve do exist for each mode.

14.3.3 Battelle Structural Stress Results

• Using the manual calculations the effect o f the weld start/stops are not 

corrected for and the FE stress just before the weld start/stop increases. Using 

the Battelle programme the weld start/stops did get corrected but the 

predicted FE stress prior to the start/stop is still high.

• Manual calculations are very similar to the Verity software structural stress 

with FLOW having slightly higher predicted stress results.

267



www.manaraa.com

14.4 Weld Fatigue Performance Master Curves

• For weld toe failure, the existing analysis programmes can readily predict the 

fatigue lives, whereas for weld throat failures, the predictive methodologies 

especially the “structural stress” calculation had to be researched.

• The weld toe failures o f TKA-Tallent show very good master curve 

conversion, whilst GKN weld toe failures, show reasonable master curve 

conversion due to the scatter in the results.

• For the weld throat failures, the stress was located above the weld on the top 

plate and using the ZI side o f the shell elements to get reasonable master 

curve conversion. For the peel throat failures the stress was located behind 

the weld on the base plate and Z2 surface was used. Reasonable master curve 

convergence was achieved.

• The regression based on life method for statistical analysis is much more 

conservative than the regression based on stress method o f analysis, as it has 

much wider scatter bands. The Endurance limit method of regression based 

on stress analysis produced scatter bands that did not bind the data, by

changing to the regression based on life, all the data was bound by the

survival curves.

• Overall, for both Volvo and Battelle approaches, structural stress-life (S- 

N) curves for welds are dependent on failure modes. For each failure 

mode, however, a master S-N curve does exist and relatively independent 

of joint geometry.

14.5 FUCA Component Fatigue Test Results

• Generally one mode o f failure for the FUCA components was identified, i.e.

weld throat failure.

• Large scatter occurred in ±2.5kN for crack initiation with low crack 

propagation rates. At ±4kN crack propagation rates were also slow; this is not 

the case at ±7kN.

• Under variable amplitude block loading conditions the high load cycles are 

the most damaging.

• Using a damage constant for the block loading sequence R=-l, D=1 under­

estimates the fatigue life which is great for design purposes, D=1.60 

accurately predicts the fatigue life o f the FUCA component.
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• For block loading sequence R=0.1, both D=1 and D=1.6 under-estimates 

fatigue life, which does not explain why FUCA at R=0.1 failed after 4000 

repeats.

• Using the Goodman diagram to calculate Miner’s Rule R=10, gives 3 

assumptions. 1st assumption under predicts life with assumption 2 and 3 over 

predicting life, showing mean stress does have an effect o f predicting fatigue 

life.

• Using average life and log(average life) predicts the fatigue lives o f the 

FUCA component under variable amplitude SAE Bracket Load-time history.

• Using 10mm constant amplitude load-life curve for Miner’s Rule predictions, 

predicts fatigue lives o f FUCA whilst using the 30mm constant amplitude 

load-life curve, over-estimates the fatigue life.

• Calculating the Miner’s Rule from Rainflow counting predicts the same life 

at 10mm. Using D=0.7 to 10mm crack more accurately predicts the results 

due to its lower life estimation. Whilst using D=0.7 to 30mm crack under 

estimates the majority of the final failure, which is good as test termination 

was at 40-50mm crack.

14.5.1 FUCA Life Predictions

One of the main achievements of the current EngD research is the extension of 

the existing Volvo and Battelle methods to allow life prediction of fatigue failure 

from weld throat and interface.

14.5.1.1 Volvo Method

• For both the 1st stress and the maximum stress, the current Volvo standard for 

weld representation under-estimates the life o f the FUCA component.

• For both 1st and maximum stress the triangular weld shape more reasonably 

predicts the life of the FUCA components.

• Volvo original definition of the weld representation is not stiff enough for the 

thin sheet material under test so therefore requires a back panel forming a 

triangular weld for thin material.

• Weld start/stop location has little effect on the predicted fatigue lives using 

the Volvo method.
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14.5.1.2 Battelle Method

• Using the ‘Inside Weld Line’ location the Battelle Structural Stress over­

predicts the fatigue lives of the test data for both the full-length and cut- 

length welds.

• The ‘Weld Root’ location under-estimates the fatigue lives o f the test data 

and therefore the correct location for the FE stress pick up for weld throat 

failures.

• There is limited sensitivity in fatigue lives predicted due to the weld start 

locations -  full and cut length welds with the full-length weld being more 

sensitive than the cut-length weld.

• Using paths 2 and 3, which incorporate the elements surrounding the weld 

into the Structural stress calculation, has lower stress and more closely 

predict fatigue lives. This is due to the surrounding elements providing 

structural support and load sharing capabilities. Therefore, more accurately 

represents the stiffness of the welded component, which is observed through 

fatigue testing.

• Weld start/stop location is critical in this as a full-length weld ensures the 

weld is much stiffer and more accurately predicts fatigue lives. Therefore 

accurate representation of the weld starting point is critical to achieve 

reasonable representation of fatigue lives.

14.5.2 FUCA Life Predictions Variable Amplitude Loading

14.5.2.1 Variable Amplitude Block Loading

• Mean stress correction o f R=-l block loading signal over-predicts the average 

test data regardless o f the damage constant value.

• Volvo method under-predicts the cut-length model accurately predicts the 

full-length model.

• Battelle method for both models under-predicts the average test data.

• Both methods require accurate weld start location to be modelled to predict 

accurate results.

• For Block loading signal o f R=0.1 (maximum load 7kN) both the Volvo and 

Battelle Method along with mean stress correction under-predict the test data.

• Changing Damage constant values from between D = 1 -  1.6 cannot be used 

to explain the fatigue life under-predictions noticed as other factors such as
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residual stress are different for different components. Therefore from this 

work keeping a D=1 is recommended.

• To accurately predict variable amplitude life o f any component, it is 

necessary for the coupon fatigue test work to cover different R-ratios before 

converting into a master S-N curve. Longer levels o f life prediction would 

have been possible if R=-l master S-N curve was available.

14.5.2.2 Variable Amplitude SAE Bracket Load-Time History

• Regardless o f Damage constant value D=1 or D=1.6, both Volvo and Battelle

methods for both models under-predict the average test data.

• Mean stress correction on both models for the Volvo method, show an

increase predicted life by a factor of 3.75, which is a very good trend even 

though the values still under-predict the log-average test repeats.

• Overall, the Battelle Method for variable amplitude loading does require an 

algorithm to correct for the effects o f mean stress.

• The current mean stress correction factor within the Volvo method also needs 

further work to establish an improved best correction method for the mean 

stress effects.

• The mean stress effect must be accounted for and incorporated into CAE 

fatigue life predictions.

14.6 Industrial Applications

• From all this analysis, two methods o f predicting weld fatigue failure in 

components or regions o f assemblies for the Volvo and Battelle methods have 

been proposed.
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15. FURTHER WORK

From this work, it is evident that there are certain factors which need to be further 

investigated. Especially, these include the effects o f mean stress oh all coupon 

geometries and subsequent mean stress correction, which will enable better CAE 

weld analysis that weld durability requires. The effect of mean stress on the 

component fatigue lives needs further analysis, as this will improve understanding of 

weld durability.

T-shaped coupons were tested under constant and variable conditions mainly for 

understanding mean stress correction. FE analysis of this more complex joint and its 

loading arrangements would be a useful intermediate step to the FUCA component 

test. This would enable the correct stresses to be located and better understanding of 

the fatigue lives.

The method of analysing the FE model for the peel joints has shown that the actual 

mode of failure is not the relatively easy sheet failure but more the throat failure of 

the weld. The location of the FE stress obtained needs further investigation. This will 

aid the FE techniques used to be modified to become more useable for weld throat 

failures.

While calculating the Battelle structural stress manually the issue arising from the 

weld start/end stress calculations needs to be resolved. Further investigations are also 

necessary to understand the equivalent structural stress algorithm to better manually 

calculate the FE stress.

To accurately predict variable amplitude life o f any component, it is necessary for 

the coupon fatigue test work to cover different R-ratios before converting into a 

master S-N curve.

Overall, the Battelle Method for variable amplitude loading does require an 

algorithm to correct for the effects of mean stress. The current mean stress correction 

factor within the Volvo method also needs further work to establish an improved best 

correction method for the mean stress effects.
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15. APPENDIX

15.1 Appendix 1 Testing

15.1.1 Coupon Testing
Coupon geometries used in this study:

GM1; Partially Welded Lap-Shear Coupon Fabricated by GKN

GM2: Fully Welded Lap-Shear Coupon Fabricated by GKN

GM3: Partially Welded Peel Coupon Fabricated by GKN

GM4; Fully Welded Peel Coupon Fabricated by GKN

GM5, 6, 8: T-Shaped Coupon Fabricated by GKN

GM 11 A: Partially Welded Lap-Shear Coupon Fabricated by GKN

GM 11B: Fully Welded Double Lap-Shear Coupon Fabricated by GKN

TM1: Partially Welded Lap-Shear Coupon Fabricated by TKA

TM2: Fully Welded Lap-Shear Coupon Fabricated by TKA

TM11 A: Partially Welded Lap-Shear Coupon Fabricated by TKA

TM1 IB: Fully Welded Double Lap-Shear Coupon Fabricated by TKA

Table A10.2.1: Coupon Testing Loading

Coupon Geometry Loading History R-Ratio Load Levels kN
GM1 0.1 9, 11, 15
GM2 8.5, 12, 15
GM2 0.5 7, 10
GM11A 11, 15,20
GM11B 11.5, 14, 20
GM3 0.5, 0.8, 1.2
GM4 0.5, 0.8, 1.2
GM5 Constant Amplitude 18,30, 36
GM6 0.1 2,3
GM8 2,3
TM1 8, 10, 15
TM2 8.5, 12, 15
TM11A 9, 15, 18
TM11B 9, 15, 18
TM11B 0.5 7.5, 10, 12.5
TM11B -1 5,9
GM11A Variable Amplitude Block Loading 20&10, 15 & 7.5
GM1 11, 15
TM11A Variable Amplitude SAE Bracket 15, 18
GM8 2,3
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15.1.2 Component Testing
Table A10.3.1: FUCA Component Testing Loading Schedule

Loading Regime Freq Applied Load kN

Constant Amplitude 2Hz
± 7
± 4
±2.5

Variable Amplitude Block Loading
± 7 , ±3.5
± 4 , ± 2

Variable Amplitude SAE Bracket ± 7
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15.2 Appendix 2 Battelle Manual Calculation

1. Edit the model.bdf file at the GP Force line to GPFORCE(PUNCH)=:ALL

2. Rerun Nastran

3. Open Patran model view weld toe area and note the Weld toe Element and 

node numbers

4. Input into Excel spreadsheet with element and node numbers going from left 

to right

5. Locate in the model.bdf file the GRID Points section and find correct nodes

6 . Input the Node x, y and z locations into excel

7. Find weld toe element edge lengths along the weld line by either using Patran 

function or excel formula yj(x -  x, ) 2 ( y -  y , ) : (z -  z , ) :

8 . If weld toe elements are not 

horizontal to the Global Co-ordinate 

system the angle from global to 

local must be calculated using the 

first and last elements x and y co­

ordinates

6 -  arctan
YNode,,, -  YNode„ ' 

XNodenj -  XNoden y

9. Opening the Nastran punch file (model.pch) find the required node numbers 

and read off for each element the force and moment lines and tabulate them 

in excel.

10. Create columns o f  Total forces and moments in x and y for each node

Weld

^5“ Fn5e4
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1 1. Calculate the total forces and moments in x and y 

12. Create a highlighted area in excel for the matrix 

n*n.

13. Fill the matrix initially with 0

14. For the diagonals tabulate — and + — 1 ^
6  3

15. Down the main diagonal enter — copy, select 

in

16. Either side o f  main diagonal enter — values, copy, select diagonal cells and
6

paste values in

17. Create another highlighted area in excel for the matrix n*n for inverse matrix

18. Select all the cells, F2 to select first cell, input MInverse select the first 

matrix as the array

19. Calculate the edge distributed loads and moments in the local coordinate 

system Fy'= FxsinO -  Fy cos 0 ,  Mx = - M x  cos 0  -  My sin 6

f ' 6 til
20. Calculate Structural Stress - o  ------------ ,

t r

A ct
Calculate the Equivalent Structural Stress = AS, = —— — ------1 s ^-0.2222 * j Qy

to local co-ordinate system

diagonal cells and paste values
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15.3 Appendix 3 Test Termination Criterion Results

0 1
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N f
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y = 1.8 1 57X-01477

♦ GM1 FF 

■ GM1SD

 Power (GM1 FF)

-  -  Power (GM1 SD)
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Cycles, Nf

1000000 10000000

Figure A 11.1.1: GKN Fabricated Ml (GM1) Coupon Joint Final Failure and 10% 

Stiffness Drop

O)ca> y = 1.5377X'
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3
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U)cnj
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Power (GM2 F F )--------Power [GM2_SD)
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Figure A l l .  1.2: GKN Fabricated M2 (GM2) Coupon Joint Final Failure and 10% 

Stiffness Drop
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y = 6.4625x'o>c<1>

c3
<DQ.
0)O)
Ctoa:

Power (GM1_1 A F F )  Power (GM11ASD)♦ GM11AFF ■ GM11ASD

0.01
1000000 100000001000 10000 100000

Cycles, Nf

Figure A 1 1.1.3: GKN Fabricated Ml 1A (GM11A) Coupon Joint Final Failure and 

10% Stiffness Drop

y = 3.7735xo>ca>
y = 3.7132x

a>o.
a>O)ccua:■atoO-I

♦ GM11BFF ■ G M 11BSD Power (GM11B F F )--------Power (GM11B SD)
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1000 10000 100000 1000000 10000000
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Figure Al l .  1.4: GKN Fabricated Ml IB (GM11B) Coupon Joint Final Failure and 

10% Stiffness Drop
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♦ GM3 FF ■ GM3 SD Power (GM3FF) - - - Power (GM3 S D )
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Figure A 1 1.1.5: GKN Fabricated M3 (GM3) Coupon Joint Final Failure and 10% 

Stiffness Drop
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Figure A 11.1.6: GKN Fabricated M4 (GM4) Coupon Joint Final Failure and 10% 

Stiffness Drop
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O)ca> y = 1.8425x
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Figure Al 1.1.7: TKA Fabricated Ml (TM1) Coupon Joint Final Failure and 10% 

Stiffness Drop
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Figure Al l .  1.8: TKA Fabricated M2 (TM2) Coupon Joint Final Failure and 10% 

Stiffness Drop
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c3
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001
1000 10000 100000 1000000 10000000
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Figure Al l .  1.9: TKA Fabricated Ml l A ( TMl l A)  Coupon Joint Final Failure and 

10% Stiffness Drop
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Figure A 11.1.10: TKA Fabricated Ml IB (TM1 IB) Coupon Joint Final Failure and 

10% Stiffness Drop
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15.4 Appendix 4 Original Coupon Test Data Final Failure Results
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Figure A l l . 1.1 1: GM 1 and GM2 Final Failure
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Figure A 11.1.12: TM 1 and TM2 Final Failure
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Figure A l 1.1.13: G M I 1A and GM1 IB Final Failure
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Figure A 1 1.1.14: TM 11A and TM 11B Final Failure
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Figure A 11.1.15: GM3 and GM4 Final Failure
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15.6 Appendix 6 Battelle Structural Stress Manual Calculations vs. FLOW 

and Verity
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Figure A 11 .7 .1: Battelle Structural Stress Manual vs. FLOW & Verity for G M 1
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15.8 Appendix 8 Volvo Structural Stress S-N Curves
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Figure A 12.5.1: S tress-Life Master Curve Conversion for All Weld Toe Failures
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Figure A 12.5.2: S tress-Life Master Curve Conversion for TKA Weld Toe Failure
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Figure A 12.5.4: Stress-Life Master Curve Conversion for Weld Interface Failure
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Table A 12.5.1: Volvo Master S-N Curve Parameters

> II a

V olvo M ethoc Structural S tress

Failure L ocation Survival a b SE log(N f)

Toe Failure
50% 7151.67 -0.2485

0.2664
99.87% 4526.7 -0.2485

Interlace Failure
50% 3189.15 -0.1583

0.2458
99.87% 2437.59 -0.1583

Throat Failure
50% 3034.71 -0.2205

0.2599
99.87% 2042.64 -0.2205
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15.9 Appendix 9 Battelle Structural Stress S-N Curves

15.9.1 Manual Structural Stress
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Figure A 12.6.1: Stress-Life Master Curve Conversion for All Weld Toe Failures
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Figure A 12.6.2: S tress-L ife  Master Curve Conversion for TKA Weld Toe Failure
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Figure A 12.6.4: Stress-Life Master Curve Conversion for All Weld Throat Failures
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Figure A 12.6.7: Stress-Life Master Curve Conversion for All Weld Throat Failures 

Table A 12.6.1: Battelle Manual Structural Stress Master S-N Curve Parameters

A a  = a N hf

B attelle M eth od  Structural S tress
Failure L ocation Survival a b SE log(N f)

Toe Failure
50% 5561.9 -0.233

0.2269
99.87% 3859.9 -0.233

Interface Failure
50% 2526.4 -0.1483

0.2157
99.87% 2025.5 -0.1483

Throat Failure
50% 3096.1 -0.2257

0.3078
99.87% 1915.9 -0.2257
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15.9.2 FLOW Structural Stress
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Figure A 12.6.8: Stress-Life Master Curve Conversion for All Weld Toe Failures
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Figure A 12.6.9: Stress-Life Master Curve Conversion for TKA Weld Toe Failures
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Figure A 12 .6 .10: Stress-Life Master Curve Conversion for GKN Weld Toe Failures
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Figure A 12.6.11: Stress-Life Master Curve Conversion for All Weld Throat Failures
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Figure A12 .6 .14: Stress-Life Master Curve Conversion for All Weld Throat Failures

Table A 12.6.2: Battelle FLOW  Structural Stress Master S-N Curve Parameters

A a

B attelle  M eth od  Structural S tress
Failure L ocation Survival a b SE log(N f)

Toe Failure
50% 5763.9 -0.2347

0.2316
99.87% 3959.4 -0.2347

Interlace Failure
50% 2583.3 -0.1482

0.2194
99.87% 2063.6 -0.1482

Throat Failure
50% 3178.4 -0.2257

0.3040
99.87% 1981.6 -0.225
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15.9.3 Verity Structural Stress
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Figure A12.6.15: Stress-Life Master Curve Conversion for All Weld Toe Failures
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Figure A 12.6.16: Stress-Life Master Curve Conversion for GKN Weld Toe Failures
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Figure A 12 .6 .18: Stress-Life Master Curve Conversion for All Weld Throat Failures
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Figure A 12 .6 .2 1: Stress-Life Master Curve Conversion for All Weld Throat Failures

Table A 12.6.3: Battelle Verity Structural Stress Master S-N Curve Parameters

A ct =  aN'j

B attelle M eth od  Structural S tress
Failure L ocation Survival a b SE log(N f)

Toe Failure
50% 5437.8 -0.2308

0.2186
99.87% 3837.3 -0.2308

Interface Failure
50% 2545 -0.1483

0.2344
99.87% 2001.7 -0.1483

Throat Failure
50% 3162.5 -0.2255

0.3068
99.87% 1960.9 -0.2255
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15.10 Appendix 10 Battelle Equivalent Structural Stress

15.10.1 Manual Equivalent Structural Stress
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Figure A 12.6.22: Stress-Life Master Curve Conversion o f  All Weld Toe Failures
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Figure A 12.6.23: Stress-Life Master Curve Conversion o f  TKA Weld Toe Failures
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Figure A 12.6.24: Stress-Life Master Curve Conversion o f  GKN Weld Toe Failures
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Figure A 12.6.25: Stress-Life Master Curve Conversion o f  All Weld Throat Failures
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Figure A 12.6.28: Stress-Life Master Curve Conversion o f  All Weld Throat Failures

Table A 12.6.4: Battelle Manual Equivalent Structural Stress Master S-N Curve 

Parameters

A a  = aN'j

B attelle M eth od  Equivalent Structural S tress
Failure Location Survival a b SE log(N f)

Toe Failure
50% 6603.9 -0.2327

0.2262
99.87% 4590.7 -0.2327

Interface Failure
50% 3003.6 -0.1483

0.2150
99.87% 2409.7 -0.1483

Throat Failure
50% 3681.1 -0.2256

0.3072
99.87% 2280.7 -0.2256

* m ■ •  •
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15.10.2 FLOW Equivalent Structural Stress
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Figure A 12.6.29: Stress-Life Master Curve Conversion o f  All Weld Toe Failures
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Figure A 12.6.30: Stress-Life Master Curve Conversion o f  TK A  W eld Toe Failures
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Figure A 12.6.31: Stress-Life Master Curve Conversion o f  GKN Weld Toe Failures
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Figure A 12.6.32: Stress-Life Master Curve Conversion o f  All Weld Throat Failures
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Figure A 12.6.33: Stress-Life Master Curve Conversion o f  All Weld Interface 
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Figure A 12.6.35: Stress-Life Master Curve Conversion o f  All Weld Throat Failures

Table A 12.6.5: Battelle FLOW  Equivalent Structural Stress Master S-N Curve 

Parameters

A a  = aN

Battelle Method Equivalent Structural Stress
Failure Location Survival a b SEIog(Nf)

Toe Failure
50% 6865.6 -0.2347

0.2318
99.87% 4714.8 -0.2347

Interlace Failure
50% 3070.4 -0.1482

0.2185
99.87% 2454.9 -0.1482

Throat Failure
50% 3779.3 -0.2249

0.3034
99.87% 2359 -0.2249
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15.10.3 Verity Equivalent Structural Stress
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Figure A 12.6.36: Stress-Life M aster Curve Conversion o f  All Weld Toe Failures
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Figure A 12.6.37: Stress-Life M aster Curve Conversion o f  TKA Weld Toe Failures
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Figure A 12.6.40: Stress-Life Master Curve Conversion o f  All Weld Interface 
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Figure A 12.6.42: Stress-Life Master Curve Conversion o f  All Weld Throat Failures

Table A 12.6.6: Battelle Verity Equivalent Structural Stress Master S-N Curve 

Parameters

A ct = a N hf

Battelle M e th o d  Equivalent S tructural S tress
Failure Location Survival a b SE log(Nf)

Toe Failure
50% 6459.4 -0.2306

0.2179
99.87% 4565.2 -0.2306

Interface Failure
50% 3022.4 -0.1483

0.2331
99.87% 2380.5 -0.1483

Throat Failure
50% 3790.1 -0.2262

0.3090
99.87% 2338.7 -0.2262
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15.11 Appendix 11 Battelle FE Stress Location -  Edge Effects
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Figure A12.6.43: Location o f  FE Stresses Used for Conversion o f  S-N Curves o f  
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Figure A12.6.44: Location o f  FE Stresses Used for Conversion o f  S-N Curves o f  
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Figure A 12.6.48: Location o f  FE Stresses Used for Conversion o f  S-N Curves o f  
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15.12 Appendix 11 Battelle Sensitivity Study -  Edge Effects

15.12.1 Manual Equivalent Structural Stress
1 0 0 0

<U
Q.
5

3
t>
3

cn
c0)
CTJ
>
’3
CT
LLi

1 0 0 0  1 0 0 0 0  1 0 0 0 0 0  1 0 0 0 0 0 0  1 0 0 0 0 0 0 0

C y c le s ,  N f

Figure A 12.6.53: Stress-L ife  Master Curve Conversion for All Weld Toe Failures
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Figure A 12.6.55: Stress-Life Master Curve Conversion for All Weld Throat Failures
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Figure A 12.6.56: Stress-Life Master Curve Conversion for All Weld Toe Failures

361



www.manaraa.com

1000

Q)U)
c
TOa:
</>
$
0)

D

C/)

C
a;
<u
>
’5
O '

LU

♦  GM 1 ■ G M 2 x T M 1

1 0 0 0  1 0 0 0 0  1 0 0 0 0 0  1 0 0 0 0 0 0  1 0 0 0 0 0 0 0
C y c le s ,  Nf

Figure A 12.6.57: S tress-Life Master Curve Conversion for All Weld Interface 
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15.12.3 Verity Equivalent Structural Stress
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Figure A 12.6.59: Stress-Life Master Curve Conversion for All Weld Toe Failures
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Figure A 12 .6 .61: Stress-Life Master Curve Conversion for All Weld Throat Failures
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15.13 Appendix 13 Comparison of Original Battelle Curves Vs. Manual, 

FLOW and Verity
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Figure A 12.6.62: Comparison o f  Original Battelle Structural Stress S-N vs. Manual 

Structural Stress S-N
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Figure A 12.6.63: Comparison o f  Original Battelle Structural Stress S-N vs. FLOW 

Structural Stress S-N
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Figure A12.6.63: Comparison o f  Original Battelle Structural Stress S-N vs. Verity 

Structural Stress S-N
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Figure A 12.6.64: Comparison o f  Original Battelle Equivalent Structural Stress S-N 

vs. Manual Equivalent Structural Stress S-N
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Figure A12.6.65: Comparison o f  Original Battelle Equivalent Structural Stress S-N 

vs. FLOW Equivalent Structural Stress S-N
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Figure A 12.6.66: Comparison o f  Original Battelle Equivalent Structural Stress S-N

vs. Verity Equivalent Structural Stress S-N
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15.14 Appendix 14 Regression Based on Stress for Battelle Structural Stress 

Method

15.14.1 Manual Regression
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Figure A 12 .7 .1: Statistical Analysis o f  All Weld Toe Failures
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Figure A 12.7.2: Statistical Analysis o f  All Weld Interface Failures
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Figure A 12.7.3: Statistical Analysis o f  All Weld Throat Failures

Table A 12.7.1: Battelle Manual Structural Stress Regression Based on Stress Master 

S-N Curve Parameters

A a  = a N hf

Battelle Method Structural Stress
Failure Location Survival a b SE log(Aas)

Toe Failure
50% 3342.9 -0.1918

0.0475
99.87% 2407.9 -0.1918

Interlace Failure
50% 2158.1 -0.1355

0.0301
99.87% 1753 -0.1355

Throat Failure
50% 2002.9 -0.1889

0.0621
99.87% 1304.2 -0.1889

D a ta  P o in ts  0 .1 3 %  Survival 9 9 .8 7 %  S u r v iv a l  50%  Survival

10000 100000 1000000 10000000
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15.14.2 FLOW Regression
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Figure A 12.7.4: Statistical Analysis o f  All Weld Toe Failures
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Figure A 12.7.5: Statistical Analysis o f  All Interface Failures
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Figure A 12.7.6: Statistical Analysis o f  All Weld Throat Failures

Table A 12.7.2: Battelle FLOW  Structural Stress Regression Based on Stress Master 

S-N Curve Parameters

A <7 -  aN hf

Battelle Method Structural Stress
Failure Location Survival a b SE log(Aos)

Toe Failure
50% 3378.6 -0.1914

0.0486
99.87% 2415.1 -0.1914

Interface Failure
50% 2195 -0.135

0.0305
99.87% 1777.5 -0.135

Throat Failure
50% 2081.4 -0.1893

0.0613
99.87% 1362.9 -0.1893
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15.14.3 Verity Regression
1 0 0 0

0 .
2
0)
o>
c
(0a:
(/>
</>
<D

c/5 1 0 0

3
O
3

♦ D a ta  P o in ts  ------- 0 .1 3 %  Survival  9 9 .8 7 %  Survival 50%  Survival !

CO
GO

1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 10000000

C y c le s ,  N f

Figure A 12.7.7: Statistical Analysis o f  All Weld Toe Failures
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Figure A 12.7.8: Statistical Analysis o f  All Interface Failures
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Figure A 12.7.9 Statistical Analysis o f  All Weld Throat Failures

Table A 12.7.3: Battelle Verity Structural Stress Regression Based on Stress Master 

S-N Curve Parameters

A ct =  aN)

Battelle Method Structural Stress
Failure Location Survival a b SE log(Aos)

Toe Failure
50% 3405.3 -0.1929

0.0457
99.87% 2483.9 -0.1929

Interface Failure
50% 2 112.9 -0.1332

0.0324
99.87% 1688.9 -0.1332

Throat Failure
50% 2052.6 -0.189

0.0619
99.87% 1338.5 -0.189

D a ta  P o in ts 0 .1 3 %  Survival 9 9 .8 7 %  Survival 50%  Survival

1 0 0 0 0 1 0 0 0 0 0  

C y c le s ,  N f

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
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15.15 Appendix 15 Regression Based on Life for Battelle Method Equivalent

Structural Stress

15.15.1 Manual regression
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Figure A 12.7.10: Statistical Analysis o f  All Weld Toe Failures
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Figure A12 .7 .11: Statistical Analysis o f  All Weld Interface Failures
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Figure A 12.7.12: Statistical Analysis o f  All Weld Throat Failures

Table A 12.7.4: Battelle Manual Equivalent Structural Stress Regression Based on 

Stress Master S-N Curve Parameters

A a  = aNj

Battel e M ethod Equiva ent Structural Stress
Failure Location Survival a b SE log(ASs)

Toe Failure
50% 3985.3 -0.1918

0.0473
99.87% 2874.4 -0.1918

Interface Failure
50% 2568.3 -0.1356

0.0300
99.87% 2087.4 -0.1356

Throat Failure
50% 2386.2 -0.189

0.0620
99.87% 1555.2 -0.189

D a ta  P o in ts  0 .1 3 %  Survival 9 9 .8 7 %  S u r v iv a l  50%  Survival

10000 100000 1000000 10000000 

C y c le s ,  N f
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15.15.2 FLOW Regression
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Figure A 12.7.13: Statistical Analysis o f  All Weld Toe Failures

1000

1 0 0

0  13%  Survival 9 9 .8 7 %  Survival 5 0 %  Survival♦  D a ta  P o in ts

10
100000001000 10000 100000 1000000

C y c le s ,  N f

Figure A 12.7.14: Statistical Analysis o f  All Weld Interface Failures
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Figure A 12.7.15: Statistical Analysis o f  All Weld Throat Failures

Table A 12.7.5: Battelle FLOW  Equivalent Structural Stress Regression Based on 

Stress Master S-N Curve Parameters

A c t  =  a N hf

Battelle Method Equivalent Structural Stress
Failure Location Survival a b SE log(ASs)

Toe Failure
50% 4021.2 -0.1914

0.0486
99.87% 2873.7 -0.1914

Interface Failure
50% 2612.2 -0.135

0.0304
99.87% 2117 -0.135

Throat Failure
50% 2479.7 -0.1894

0.0612
99.87% 1625.2 -0.1894
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15.15.3 Verity Regression
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Figure A12 .7 .16: Statistical Analysis o f  All Weld Toe Failures
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Figure A 12.7.17: Statistical Analysis o f  All W eld Interface Failures
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Figure A 12.7.18: Statistical Analysis o f  All Weld Throat Failures

Table A 12.7.6: Battelle Verity Equivalent Structural Stress Regression Based on 

Stress Master S-N Curve Parameters

A (T =  aN bf

Battelle Method Equivalent Structural Stress
Failure Location Survival a b SE log(ASs)

Toe Failure
50% 4059.7 -0.193

0.0455
99.87% 2964.7 -0.193

Interface Failure
50% 2514.4 -0.1333

0.0323
99.87% 2012.2 -0.1333

Throat Failure
50% 2441.6 -0.1891

0.0624
99.87% 1586.3 -0.1891
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